Searched for: in-biosketch:yes
person:palait01
Effect of cyclooxygenase inhibition on cholesterol efflux proteins and atheromatous foam cell transformation in THP-1 human macrophages: a possible mechanism for increased cardiovascular risk
Chan, Edwin S L; Zhang, Hongwei; Fernandez, Patricia; Edelman, Sari D; Pillinger, Michael H; Ragolia, Louis; Palaia, Thomas; Carsons, Steven; Reiss, Allison B
Both selective cyclooxygenase (COX)-2 inhibitors and non-steroidal anti-inflammatory drugs (NSAIDs) have been beneficial pharmacological agents for many patients suffering from arthritis pain and inflammation. However, selective COX-2 inhibitors and traditional NSAIDs are both associated with heightened risk of myocardial infarction. Possible pro-atherogenic mechanisms of these inhibitors have been suggested, including an imbalance in prostanoid production leaving the pro-aggregatory prostaglandins unopposed, but the precise mechanisms involved have not been elucidated. We explored the possibility that downregulation of proteins involved in reverse cholesterol transport away from atheromatous plaques contributes to increased atherogenesis associated with COX inhibition. The reverse cholesterol transport proteins cholesterol 27-hydroxylase and ATP-binding cassette transporter A1 (ABCA1) export cholesterol from macrophages. When mechanisms to process lipid load are inadequate, uncontrolled cholesterol deposition in macrophages transforms them into foam cells, a key element of atheromatous plaques. We showed that in cultured THP-1 human monocytes/macrophages, inhibition of COX-1, COX-2, or both reduced expression of 27-hydroxylase and ABCA1 message (real-time reverse transcription-polymerase chain reaction) and protein (immunoblot). The selective COX-2 inhibitor N-(2-cyclohexyloxy-4-nitrophenyl)methanesulfonamide (NS398) significantly reduced 27-hydroxylase and ABCA1 message (to 62.4% +/- 2.2% and 71.1% +/- 3.9% of control, respectively). Incubation with prostaglandin (PG) E2 or PGD2 reversed reductions in both of these cholesterol transport proteins induced by NS398. Cholesterol-loaded THP-1 macrophages showed significantly increased foam cell transformation in the presence of NS398 versus control (42.7% +/- 6.6% versus 20.1% +/- 3.4%, p = 0.04) as determined by oil red O staining. Pharmacological inhibition of COX in monocytes is involved in downregulation of two proteins that mediate cholesterol efflux: cholesterol 27-hydroxylase and ABCA1. Because these proteins are anti-atherogenic, their downregulation may contribute to increased incidence of cardiac events in patients treated with COX inhibitors. Reversal of inhibitory effects on 27-hydroxylase and ABCA1 expression by PGD2 and PGE2 suggests involvement of their respective signaling pathways. NS398-treated THP-1 macrophages show greater vulnerability to form foam cells. Increased cardiovascular risk with COX inhibition may be ascribed at least in part to altered cholesterol metabolism
PMCID:1860062
PMID: 17244362
ISSN: 1478-6362
CID: 71926
Endothelial microparticles: A novel marker for endothelial dysfunction in patients with diabetes mellitus. [Meeting Abstract]
Tramontano, Anthony F.; O'Leary, Jeanne; Virland, Diana M.; Lyubarova, Radmila; Palaia, Thomas; Reddy, Koushik R.; DeLeon, Joshua R.; Ragolia, Louis
ISI:000241792800676
ISSN: 0009-7322
CID: 3406902
COX-2 inhibition promotes atheromatous foam cell transformation in THP-1 human macrophages: A possible mechanism for increased cardiovascular risk. [Meeting Abstract]
Edelman, SD; Chan, ESL; Zhang, HW; Carsons, S; Ragolia, L; Palaia, T; Reiss, AB
ISI:000232207802259
ISSN: 1529-0131
CID: 2677702
Accelerated glucose intolerance, nephropathy, and atherosclerosis in prostaglandin D2 synthase knock-out mice
Ragolia, Louis; Palaia, Thomas; Hall, Christopher E; Maesaka, John K; Eguchi, Naomi; Urade, Yoshihiro
Type 2 diabetics have an increased risk of developing atherosclerosis, suggesting the mechanisms that cause this disease are enhanced by insulin resistance. In this study we examined the effects of gene knock-out (KO) of lipocalin-type prostaglandin D(2) synthase (L-PGDS), a protein found at elevated levels in type 2 diabetics, on diet-induced glucose tolerance and atherosclerosis. Our results show that L-PGDS KO mice become glucose-in-tolerant and insulin-resistant at an accelerated rate when compared with the C57BL/6 control strain. Adipocytes were significantly larger in the L-PGDS KO mice compared with controls on the same diets. Cell culture data revealed significant differences between insulin-stimulated mitogen-activated protein kinase phosphatase-2, protein-tyrosine phosphatase-1D, and phosphorylated focal adhesion kinase expression levels in L-PGDS KO vascular smooth muscle cells and controls. In addition, only the L-PGDS KO mice developed nephropathy and an aortic thickening reminiscent to the early stages of atherosclerosis when fed a "diabetogenic" high fat diet. We conclude that L-PGDS plays an important role regulating insulin sensitivity and atherosclerosis in type 2 diabetes and may represent a novel model of insulin resistance, atherosclerosis, and diabetic nephropathy.
PMID: 15970590
ISSN: 0021-9258
CID: 3464662
The effect of a high-fat diet on the development of fatty liver, insulin resistance and altered P53 expression in C57bl/6 mice [Meeting Abstract]
Pandya, H; Grendell, JH; Turi, GK; Palaia, T; Hall, CE; Feuerman, M; Ragolia, L; Weston, SR
ISI:000228619306153
ISSN: 0016-5085
CID: 3276562
Superoxide dismutase moderates basal and induced bacterial adherence and interleukin-8 expression in airway epithelial cells
Arita, Yuko; Joseph, Ansamma; Koo, Hshi-Chi; Li, Yuchi; Palaia, Thomas A; Davis, Jonathan M; Kazzaz, Jeffrey A
Bacterial infection of the tracheobronchial tree is a frequent, serious complication in patients receiving treatment with oxygen and mechanical ventilation, resulting in increased morbidity and mortality. Using human airway epithelial cell culture models, we examined the effect of hyperoxia on bacterial adherence and the expression of interleukin-8 (IL-8), an important mediator involved in the inflammatory process. A 24-h exposure to 95% O(2) increased Pseudomonas aeruginosa (PA) adherence 57% in A549 cells (P < 0.01) and 115% in 16HBE cells (P < 0.01) but had little effect on Staphylococcus aureus (SA) adherence. Exposure to hyperoxia, followed by a 1-h incubation with SA, further enhanced PA adherence (P < 0.01), suggesting that hyperoxia and SA colonization may enhance the susceptibility of lung epithelial cells to gram-negative infections. IL-8 expression was also increased in cells exposed to both hyperoxia and PA. Stable or transient overexpression of manganese superoxide dismutase reduced both basal and stimulated levels of PA adherence and IL-8 levels in response to exposure to either hyperoxia or PA. These data indicate that hyperoxia increases susceptibility to infection and that the pathways are mediated by reactive oxygen species. Therapeutic intervention strategies designed to prevent accumulation of intracellular reactive oxygen species may reduce opportunistic pulmonary infections.
PMID: 15286004
ISSN: 1040-0605
CID: 5030302
Inhibition of cell cycle progression and migration of vascular smooth muscle cells by prostaglandin D2 synthase: resistance in diabetic Goto-Kakizaki rats
Ragolia, Louis; Palaia, Thomas; Koutrouby, Tara B; Maesaka, John K
The regulation of vascular smooth muscle cell (VSMC) proliferation, migration, and apoptosis plays a clear role in the atherosclerotic process. Recently, we reported on the inhibition of the exaggerated growth phenotype of VSMCs isolated from hypertensive rats by lipocalin-type prostaglandin D2 synthase (L-PGDS). In the present study, we report the differential effects of L-PGDS on VSMC cell cycle progression, migration, and apoptosis in wild-type VSMCs vs. those from a type 2 diabetic model. In wild-type VSMCs, exogenously added L-PGDS delayed serum-induced cell cycle progression from the G1 to S phase, as determined by gene array analysis and the decreased protein expressions of cyclin-dependent kinase-2, p21(Cip1), and cyclin D1. Cyclin D3 protein expression was unaffected by L-PGDS, although its gene expression was stimulated by L-PGDS in wild-type cells. In addition, platelet-derived growth factor-induced VSMC migration was inhibited by L-PGDS in wild-type cells. Type 2 diabetic VSMCs, however, were resistant to the L-PGDS effects on cell cycle progression and migration. L-PGDS did suppress the hyperproliferation of diabetic cells, albeit through a different mechanism, presumably involving the 2.5-fold increase in apoptosis and the concomitant 10-fold increase of L-PGDS uptake we observed in these cells. We propose that in wild-type VSMCs, L-PGDS retards cell cycle progression and migration, precluding hyperplasia of the tunica media, and that diabetic cells appear resistant to the inhibitory effects of L-PGDS, which consequently may help explain the increased atherosclerosis observed in diabetes.
PMID: 15240344
ISSN: 0363-6143
CID: 3464652
Platelet-derived growth factor-induced vascular smooth muscle cell migration is inhibited by prostaglandin D-2 synthase: Failure in the diabetic Goto-Kakizaki rat model [Meeting Abstract]
Ragolia, L; Palaia, T; Koutrouby, TB; Maesaka, JK
ISI:000221690502546
ISSN: 0012-1797
CID: 3464902
Cytoprotection by darbepoetin/epoetin alfa in pig tubular and mouse mesangial cells
Fishbane, Steven; Ragolia, Louis; Palaia, Thomas; Johnson, Barbra; Elzein, Hafez; Maesaka, John K
BACKGROUND:Erythropoietin has recently been found to have cytoprotective effects in the central nervous system (CNS) and retina. The purpose of this study was to determine if darbepoetin alfa (DA) has cytoprotective properties in renal tissues. METHODS:DA was studied in LLC/PK1 and mesangial cells. Renal cellular injury was induced in different experiments by prostaglandin D2 synthase (PGDS), camptothecin, hydrogen peroxide, and hypoxia. Cellular proliferation and apoptosis were measured [apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL) assay or by caspase-3 activity]. In a separate experiment, an inactive form of erythropoietin alfa was used to study receptor effects. RESULTS:DA protected against the antiproliferative effects of PGDS. In both LLC/PK1 (TUNEL and caspase-3) and mesangial cells (TUNEL), DA reduced the apoptotic stimulus of PGDS. Epoetin alfa was also found to reduce apoptosis. In LLC/PK1 cells, DA reduced apoptosis induced by camptothecin, but not hydrogen peroxide. DA reduced LLC/PK1 apoptosis induced by hypoxia when added 24 hours before hypoxia, but not when given concurrent with the hypoxic stimulus. Erythropoietin inactive did not protect against PGDS-induced apoptosis. CONCLUSION/CONCLUSIONS:DA has renal antiapoptotic effects for both toxic and hypoxic stimuli. The effect may be mediated via the Erythropoietin receptor.
PMID: 14717915
ISSN: 0085-2538
CID: 3464642
Prostaglandin D2 synthase inhibits the exaggerated growth phenotype of spontaneously hypertensive rat vascular smooth muscle cells
Ragolia, Louis; Palaia, Thomas; Paric, Enesa; Maesaka, John K
Lipocalin-type prostaglandin D2 synthase (L-PGDS) has recently been linked to a variety of pathophysiological cardiovascular conditions including hypertension and diabetes. In this study, we report on the 50% increase in L-PGDS protein expression observed in vascular smooth muscle cells (VSMC) isolated from spontaneously hypertensive rats (SHR). L-PGDS expression also increased 50% upon the differentiation of normotensive control cells (WKY, from Wistar-Kyoto rats). In addition, we demonstrate differential effects of L-PGDS treatment on cell proliferation and apoptosis in VSMCs isolated from SHR versus WKY controls. L-PGDS (50 microg/ml) was able to significantly inhibit VSMC proliferation and DNA synthesis and induce the apoptotic genes bax, bcl-x, and ei24 in SHR but had no effect on WKY cells. Hyperglycemic conditions also had opposite effects, in which increased glucose concentrations (20 mm) resulted in decreased L-PGDS expression in control cells but actually stimulated L-PGDS expression in SHR. Furthermore, we examined the effect of L-PGDS incubation on insulin-stimulated Akt, glycogen synthase kinase-3beta (GSK-3beta), and ERK phosphorylation. Unexpectedly, we found that when WKY cells were pretreated with L-PGDS, insulin could actually induce apoptosis and failed to stimulate Akt/GSK-3beta phosphorylation. Insulin-stimulated ERK phosphorylation was unaffected by L-PGDS pretreatment in both cell lines. We propose that L-PGDS is involved in the balance of VSMC proliferation and apoptosis and in the increased expression observed in the hypertensive state is an attempt to maintain a proper equilibrium between the two processes via the induction of apoptosis and inhibition of cell proliferation.
PMID: 12684506
ISSN: 0021-9258
CID: 3464632