Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:reizib01

Total Results:

78


Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine

Lewis, Kanako L; Caton, Michele L; Bogunovic, Milena; Greter, Melanie; Grajkowska, Lucja T; Ng, Dennis; Klinakis, Apostolos; Charo, Israel F; Jung, Steffen; Gommerman, Jennifer L; Ivanov, Ivaylo I; Liu, Kang; Merad, Miriam; Reizis, Boris
Dendritic cells (DCs) in tissues and lymphoid organs comprise distinct functional subsets that differentiate in situ from circulating progenitors. Tissue-specific signals that regulate DC subset differentiation are poorly understood. We report that DC-specific deletion of the Notch2 receptor caused a reduction of DC populations in the spleen. Within the splenic CD11b(+) DC subset, Notch signaling blockade ablated a distinct population marked by high expression of the adhesion molecule Esam. The Notch-dependent Esam(hi) DC subset required lymphotoxin beta receptor signaling, proliferated in situ, and facilitated CD4(+) T cell priming. The Notch-independent Esam(lo) DCs expressed monocyte-related genes and showed superior cytokine responses. In addition, Notch2 deletion led to the loss of CD11b(+)CD103(+) DCs in the intestinal lamina propria and to a corresponding decrease of IL-17-producing CD4(+) T cells in the intestine. Thus, Notch2 is a common differentiation signal for T cell-priming CD11b(+) DC subsets in the spleen and intestine.
PMCID:3225703
PMID: 22018469
ISSN: 1074-7613
CID: 1377412

Tolerogenic function of Blimp-1 in dendritic cells

Kim, Sun Jung; Zou, Yong Rui; Goldstein, Jordan; Reizis, Boris; Diamond, Betty
Blimp-1 has been identified as a key regulator of plasma cell differentiation in B cells and effector/memory function in T cells. We demonstrate that Blimp-1 in dendritic cells (DCs) is required to maintain immune tolerance in female but not male mice. Female mice lacking Blimp-1 expression in DCs (DCBlimp-1(ko)) or haploid for Blimp-1 expression exhibit normal DC development but an altered DC function and develop lupus-like autoantibodies. Although DCs have been implicated in the pathogenesis of lupus, a defect in DC function has not previously been shown to initiate the disease process. Blimp-1(ko) DCs display increased production of IL-6 and preferentially induce differentiation of follicular T helper cells (T(FH) cells) in vitro. In vivo, the expansion of T(FH) cells is associated with an enhanced germinal center (GC) response and the development of autoreactivity. These studies demonstrate a critical role for Blimp-1 in the tolerogenic function of DCs and show that a diminished expression of Blimp-1 in DCs can result in aberrant activation of the adaptive immune system with the development of a lupus-like serology in a gender-specific manner. This study is of particular interest because a polymorphism of Blimp-1 associates with SLE.
PMCID:3201204
PMID: 21948081
ISSN: 0022-1007
CID: 1377422

Plasmacytoid dendritic cells: recent progress and open questions

Reizis, Boris; Bunin, Anna; Ghosh, Hiyaa S; Lewis, Kanako L; Sisirak, Vanja
Plasmacytoid dendritic cells (pDCs) are specialized in rapid and massive secretion of type I interferon (IFN-alpha/beta) in response to foreign nucleic acids. Combined with their antigen presentation capacity, this powerful functionality enables pDCs to orchestrate innate and adaptive immune responses. pDCs combine features of both lymphocytes and classical dendritic cells and display unique molecular adaptations to nucleic acid sensing and IFN production. In the decade since the identification of the pDC as a distinct immune cell type, our understanding of its molecular underpinnings and role in immunity has progressed rapidly. Here we review select aspects of pDC biology including cell fate establishment and plasticity, specific molecular mechanisms of pDC function, and the role of pDCs in T cell responses, antiviral immunity, and autoimmune diseases. Important unresolved questions remain in these areas, promising exciting times in pDC research for years to come.
PMCID:4160806
PMID: 21219184
ISSN: 0732-0582
CID: 1377472

Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells

Ghosh, Hiyaa S; Cisse, Babacar; Bunin, Anna; Lewis, Kanako L; Reizis, Boris
The interferon-producing plasmacytoid dendritic cells (pDCs) share common progenitors with antigen-presenting classical dendritic cells (cDCs), yet they possess distinct morphology and molecular features resembling those of lymphocytes. It is unclear whether the unique cell fate of pDCs is actively maintained in the steady state. We report that the deletion of transcription factor E2-2 from mature peripheral pDCs caused their spontaneous differentiation into cells with cDC properties. This included the loss of pDC markers, increase in MHC class II expression and T cell priming capacity, acquisition of dendritic morphology, and induction of cDC signature genes. Genome-wide chromatin immunoprecipitation revealed direct binding of E2-2 to key pDC-specific and lymphoid genes, as well as to certain genes enriched in cDCs. Thus, E2-2 actively maintains the cell fate of mature pDCs and opposes the "default" cDC fate, in part through direct regulation of lineage-specific gene expression programs.
PMCID:3010277
PMID: 21145760
ISSN: 1074-7613
CID: 1377502

Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling

Sathaliyawala, Taheri; O'Gorman, William E; Greter, Melanie; Bogunovic, Milena; Konjufca, Vjollca; Hou, Z Esther; Nolan, Garry P; Miller, Mark J; Merad, Miriam; Reizis, Boris
Dendritic cells (DCs) comprise distinct functional subsets including CD8(-) and CD8(+) classical DCs (cDCs) and interferon-secreting plasmacytoid DCs (pDCs). The cytokine Flt3 ligand (Flt3L) controls the development of DCs and is particularly important for the pDC and CD8(+) cDC and their CD103(+) tissue counterparts. We report that mammalian target of rapamycin (mTOR) inhibitor rapamycin impaired Flt3L-driven DC development in vitro, with the pDCs and CD8(+)-like cDCs most profoundly affected. Conversely, deletion of the phosphoinositide 3-kinase (PI3K)-mTOR negative regulator Pten facilitated Flt3L-driven DC development in culture. DC-specific Pten targeting in vivo caused the expansion of CD8(+) and CD103(+) cDC numbers, which was reversible by rapamycin. The increased CD8(+) cDC numbers caused by Pten deletion correlated with increased susceptibility to the intracellular pathogen Listeria. Thus, PI3K-mTOR signaling downstream of Flt3L controls DC development, and its restriction by Pten ensures optimal DC pool size and subset composition.
PMCID:2966531
PMID: 20933441
ISSN: 1074-7613
CID: 1377512

Therapeutic targeting of Syk in autoimmune diabetes

Colonna, Lucrezia; Catalano, Geoffrey; Chew, Claude; D'Agati, Vivette; Thomas, James W; Wong, F Susan; Schmitz, Jochen; Masuda, Esteban S; Reizis, Boris; Tarakhovsky, Alexander; Clynes, Raphael
In APCs, the protein tyrosine kinase Syk is required for signaling of several immunoreceptors, including the BCR and FcR. We show that conditional ablation of the syk gene in dendritic cells (DCs) abrogates FcgammaR-mediated cross priming of diabetogenic T cells in RIP-mOVA mice, a situation phenocopied in wild-type RIP-mOVA mice treated with the selective Syk inhibitor R788. In addition to blocking FcgammaR-mediated events, R788 also blocked BCR-mediated Ag presentation, thus broadly interrupting the humoral contributions to T cell-driven autoimmunity. Indeed, oral administration of R788 significantly delayed spontaneous diabetes onset in NOD mice and successfully delayed progression of early-established diabetes even when treatment was initiated after the development of glucose intolerance. At the DC level, R788 treatment was associated with reduced insulin-specific CD8 priming and decreased DC numbers. At the B cell level, R788 reduced total B cell numbers and total Ig concentrations. Interestingly, R788 increased the number of IL-10-producing B cells, thus inducing a tolerogenic B cell population with immunomodulatory activity. Taken together, we show by genetic and pharmacologic approaches that Syk in APCs is an attractive target in T cell-mediated autoimmune diseases such as type 1 diabetes.
PMCID:2981095
PMID: 20601600
ISSN: 0022-1767
CID: 1377562

Regulation of plasmacytoid dendritic cell development

Reizis, Boris
Plasmacytoid dendritic cells (PDC) represent a distinct immune cell type specialized in direct virus recognition and rapid secretion of type I interferon. The origin and lineage affiliation of PDC have been controversial, partly because PDC show features of both lymphocytes and dendritic cells (DC). Recent studies helped elucidate the cellular and molecular basis of PDC development. In particular, the common developmental origin and genetic similarity of PDC and classical antigen-presenting DC have been established. In addition, E protein transcription factor E2-2 was shown to control lineage commitment and gene expression program of PDC. Because E proteins are essential regulators of lymphocyte development, E2-2 activity may underlie the distinct 'lymphoid' features of PDC.
PMCID:2854232
PMID: 20144853
ISSN: 0952-7915
CID: 1377572

Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function

Melillo, Jessica A; Song, Li; Bhagat, Govind; Blazquez, Ana Belen; Plumlee, Courtney R; Lee, Carolyn; Berin, Cecilia; Reizis, Boris; Schindler, Christian
Dendritic cells (DCs) must achieve a critical balance between activation and tolerance, a process influenced by cytokines and growth factors. IL-10, which transduces signals through Stat3, has emerged as one important negative regulator of DC activation. To directly examine the role Stat3 plays in regulating DC activity, the Stat3 gene was targeted for deletion with a CD11c-cre transgene. Stat3 CKO mice developed cervical lymphadenopathy as well as a mild ileocolitis that persisted throughout life and was associated with impaired weight gain. Consistent with this, Stat3-deficient DCs demonstrated enhanced immune activity, including increased cytokine production, Ag-dependent T-cell activation and resistance to IL-10-mediated suppression. These results reveal a cell-intrinsic negative regulatory role of Stat3 in DCs and link increased DC activation with perturbed immune homeostasis and chronic mucosal inflammation.
PMCID:3099405
PMID: 20124100
ISSN: 0022-1767
CID: 1377582

Macrophage- and dendritic-cell-derived interleukin-15 receptor alpha supports homeostasis of distinct CD8+ T cell subsets

Mortier, Erwan; Advincula, Rommel; Kim, Leesun; Chmura, Stephen; Barrera, Julio; Reizis, Boris; Malynn, Barbara A; Ma, Averil
Interleukin-15 receptor alpha (IL-15R alpha) is a pleiotropically expressed molecule that chaperones and trans-presents IL-15 to NK and T cells. To investigate whether IL-15R alpha presented by different cells perform distinct physiological functions, we have generated four lines of mice lacking IL-15R alpha in various cell types. We find that IL-15R alpha expression on macrophages but not dendritic cells (DCs) supports the early transition of antigen specific effector CD8(+) T cells to memory cells. After memory CD8(+) T cell differentiation, IL-15R alpha expression on DCs selectively supports central memory CD8(+) T cells, whereas IL-15R alpha expression on macrophages supports both central and effector memory CD8(+) T cells. By contrast, mice lacking IL-15R alpha on macrophages, DCs, or both, exhibit equivalent defects in NK cell homeostasis and activation. These studies define unique roles for macrophage expression of IL-15R alpha and show that NK cells rely upon distinct IL-15R alpha dependent IL-15 signals than memory CD8(+) T cells. Moreover, they demonstrate the diversity, specification, and geographic restriction of cytokine signals.
PMID: 19913445
ISSN: 1074-7613
CID: 1377592

Type I interferon signaling in dendritic cells stimulates the development of lymph-node-resident T follicular helper cells

Cucak, Helena; Yrlid, Ulf; Reizis, Boris; Kalinke, Ulrich; Johansson-Lindbom, Bengt
T follicular helper (Tfh) cells represent a recently defined CD4(+) T cell subset characterized by the expression of the chemokine receptor CXCR5 and an enhanced ability to support B cells to mount antibody responses. Here, we demonstrate that lymph-node-resident CXCR5(+) Tfh cells and gut-homing integrin alpha(4)beta(7)-expressing T helper cells are generated as separate subsets in the gut-draining mesenteric lymph nodes. Type I interferon signaling in dendritic cells and in nonhematopoietic cells selectively stimulates Tfh cell development in response to antigen in conjunction with Toll-like receptor (TLR)3 or TLR4 agonists. Consistent with this, the ability of dendritic cells to produce the cytokine IL-6, required for in vivo Tfh differentiation, and antibody affinity maturation are both reduced in absence of type I interferon signaling. Thus, our results identify type I interferon as a natural adjuvant that selectively supports the generation of lymph node resident Tfh cells.
PMID: 19733096
ISSN: 1074-7613
CID: 1377602