Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:samueh01

Total Results:

131


Differential transactivation potentials of the thyroid hormone receptor alpha and beta isoforms [Meeting Abstract]

Hadzic, E; Samuels, HH
ISI:A1996UG20700236
ISSN: 1081-5589
CID: 52950

Interactions of the thyroid hormone receptor with the human immunodeficiency virus type I (HIV-1) long terminal repeat and the HIV-1 tat transactivator [Meeting Abstract]

DesaiYajnik, V; Samuels, HH
ISI:A1996UG20700235
ISSN: 1081-5589
CID: 52949

Molecular interactions of p53 with thyroid hormone nuclear receptors [Meeting Abstract]

Qi, JS; DesaiYajnik, V; Samuels, HH
ISI:A1996UG20700218
ISSN: 1081-5589
CID: 52945

Hormone-dependent and -independent transcriptional activation by thyroid hormone receptors are mediated by different mechanisms [see comments]

Helmer EB; Raaka BM; Samuels HH
Transcriptional activation by thyroid hormone (T3) receptor (T3R) generally requires the binding of its high affinity ligand. However, we reported previously that chicken T3R alpha (cTaR alpha) and human T3R beta 1 (hT3R beta 1) could activate transcription from several promoters containing T3R response elements (TREs) in a hormone-independent fashion when expressed in rat anterior pituitary GH4C1 cells. In this study we show that rat T3R alpha 1 also activates transcription without T3 in GH4C1 cells and that the oncoprotein v-erbA that is derived from cT3R alpha but does bind T3 is not a constitutive activator in these cells. Increased expression of T3R results in transcriptional activation of both native and minimal promoters, and this activation does not appear to require a defined TRE in the promoter. Because hormone-independent activity is not observed in several other cell lines, this activity may involve specific factors present in GH4C1 cells. Three mutants with single amino acid changes in a 20-amino acid region of the ligand-binding domain of cT3R alpha do not mediate hormone-independent activity. This region is highly conserved within the nuclear receptor family and has been implicated in interactions with other proteins, suggesting participation of other transcription or accessory factors in the hormone-independent activity of T3R. Two of these mutants mediate hormone-dependent transcriptional activation similar to wild-type cT3R alpha. All three mutants interact in vitro with retinoid X receptor beta similar to wild-type cT3R alpha. Our findings suggest that hormone-dependent and hormone-independent transactivation proceed by distinct mechanisms
PMID: 8593781
ISSN: 0013-7227
CID: 6914

Novel regulation of keratin gene expression by thyroid hormone and retinoid receptors

Tomic-Canic M; Day D; Samuels HH; Freedberg IM; Blumenberg M
Expression of keratin proteins, markers of epidermal differentiation and pathology, is uniquely regulated by the nuclear receptors for retinoic acid (RAR) and thyroid hormone (T3R) and their ligands: it is constitutively activated by unliganded T3R, but it is suppressed by ligand-occupied T3R or RAR. This regulation was studied using gel mobility shift assays with purified receptors and transient transfection assays with vectors expressing various receptor mutants. Regulation of keratin gene expression by RAR and T3R occurs through direct binding of these receptors to receptor response elements of the keratin gene promoters. The DNA binding 'C' domain of these receptors is essential for both ligand-dependent and -independent regulation. However, the NH2-terminal 'A/B' domain of T3R is not required for either mode of regulation of keratin gene expression. Furthermore, v-ErbA, an oncogenic derivative of cT3R, also activates keratin gene expression. In contrast to the previously described mechanism of gene regulation by T3R, heterodimerization with the retinoid X receptor is not essential for activation of keratin gene expression by unliganded T3R. These findings indicate that the mechanism of regulation of keratin genes by RAR and T3R differs significantly from the mechanisms described for other genes modulated by these receptors
PMID: 8576132
ISSN: 0021-9258
CID: 8045

A 10-amino-acid sequence in the N-terminal A/B domain of thyroid hormone receptor alpha is essential for transcriptional activation and interaction with the general transcription factor TFIIB

Hadzic E; Desai-Yajnik V; Helmer E; Guo S; Wu S; Koudinova N; Casanova J; Raaka BM; Samuels HH
The effects of the thyroid hormone (3,5,3'-triiodo-L-thyronine [T3]) on gene transcription are mediated by nuclear T3 receptors (T3Rs). alpha- and beta-isoform T3Rs (T3R alpha and -beta) are expressed from different genes and are members of a superfamily of ligand-dependent transcription factors that also includes the receptors for steroid hormones, vitamin D, and retinoids. Although T3 activates transcription by mediating a conformational change in the C-terminal approximately 220-amino-acid ligand-binding domain (LBD), the fundamental mechanisms of T3R-mediated transcriptional activation remain to be determined. We found that deletion of the 50-amino-acid N-terminal A/B domain of chicken T3R alpha (cT3R alpha) decreases T3-dependent stimulation of genes regulated by native thyroid hormone response elements about 10- to 20-fold. The requirement of the A/B region for transcriptional activation was mapped to amino acids 21 to 30, which contain a cluster of five basic amino acids. The A/B region of cT3R alpha is not required for T3 binding or for DNA binding of the receptor as a heterodimer with retinoid X receptor. In vitro binding studies indicate that the N-terminal region of cT3R alpha interacts efficiently with TFIIB and that this interaction requires amino acids 21 to 30 of the A/B region. In contrast, the LBD interacts poorly with TFIIB. The region of TFIIB primarily involved in the binding of cT3R alpha includes an amphipathic alpha helix contained within residues 178 to 201. Analysis using a fusion protein containing the DNA-binding domain of GAL4 and the entire A/B region of cT3R alpha suggests that this region does not contain an intrinsic activation domain. These and other studies indicate that cT3R alpha mediates at least some of its effects through TFIIB in vivo and that the N-terminal region of DNA-bound cT3R alpha acts to recruit and/or stabilize the binding of TFIIB to the transcription complex. T3 stimulation could then result from ligand-mediated changes in the LBD which may lead to the interaction of other factors with cT3R alpha, TFIIB, and/or other components involved in the initiation of transcription
PMCID:230690
PMID: 7623841
ISSN: 0270-7306
CID: 6831

Interactions of thyroid hormone receptor with the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and the HIV-1 Tat transactivator

Desai-Yajnik V; Hadzic E; Modlinger P; Malhotra S; Gechlik G; Samuels HH
Thyroid hormone (T3) receptor (T3R) regulates the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) by binding to and activating thyroid hormone response elements (TREs) embedded within the viral NF-kappa B and Sp1 motifs. The TREs within the NF-kappa B sites are necessary for activation by T3 in the absence of Tat, while those in the Sp1 motifs function as TREs only when Tat is expressed, suggesting that Tat and T3R interact in the cell. Transactivation of the HIV-1 LTR by T3R alpha and several receptor mutants revealed that the 50-amino-acid N-terminal A/B region of T3R alpha, known to interact with the basal transcription factor TFIIB, is critical for activation of both Tat-dependent and Tat-independent responsive sequences of the LTR. A single amino acid change in the highly conserved tau 1 region in the ligand-binding domain of T3R alpha eliminates Tat-independent but not Tat-dependent activation of the HIV-1 LTR by T3. Ro 5-3335 [7-chloro-5-(2-pyrryl)-3H-1,4-benzodiazepin-2(H)-one], which inhibits Tat-mediated transactivation of HIV-1, also inhibits the functional interaction between Tat and T3R alpha. Binding studies with glutathione-S-transferase fusion proteins and Western (immunoblot) analysis indicate that T3R alpha interacts with Tat through amino acids within the DNA-binding domain of T3R alpha. Mutational analysis revealed that amino acid residues in the basic and C-terminal regions of Tat are required for the binding of Tat to T3R alpha, while the N terminus of Tat is not required. These studies provide functional and physical evidence that stimulation of the HIV-1 LTR by T3 involves an interaction between T3R alpha and Tat. Our results also suggest a model in which multiple domains of T3R alpha interact with Tat and other factors to form transcriptionally important complexes
PMCID:189328
PMID: 7609079
ISSN: 0022-538x
CID: 6817

The ligand-binding domains of the thyroid hormone/retinoid receptor gene subfamily function in vivo to mediate heterodimerization, gene silencing, and transactivation

Qi JS; Desai-Yajnik V; Greene ME; Raaka BM; Samuels HH
The ligand-binding domains (LBDs) of the thyroid/retinoid receptor gene subfamily contain a series of heptad motifs important for dimeric interactions. This subfamily includes thyroid hormone receptors (T3Rs), all-trans retinoic acid (RA) receptors (RARs), 9-cis RA receptors (RARs and retinoid X receptors [RXRs]), the 1,25-dihydroxyvitamin D3 receptor (VDR), and the receptors that modulate the peroxisomal beta-oxidation pathway (PPARs). These receptors bind to their DNA response elements in vitro as heterodimers with the RXRs. Unliganded receptors in vivo, in particular the T3Rs, can mediate gene silencing and ligand converts these receptors into a transcriptionally active form. The in vivo interactions of these receptors with RXR were studied by using a GAL4-RXR chimera containing the yeast GAL4 DNA-binding domain and the LBD of RXR beta. GAL4-RXR activates transcription from GAL4 response elements in the presence of 9-cis RA. Unliganded T3R, which does not bind or activate GAL4 elements, represses the activation of GAL4-RXR by 9-cis RA in HeLa cells. However, addition of T3 alone leads to transcriptional activation. These findings suggest that T3R can repress or activate transcription while tethered to the LBD of GAL4-RXR and that heterodimerization can occur in vivo without stabilization by hormone response elements. Similar ligand-dependent activation was observed in HeLa cells expressing RAR, VDR, or PPAR and in GH4C1 cells from endogenous receptors.(ABSTRACT TRUNCATED AT 250 WORDS)
PMCID:230406
PMID: 7862171
ISSN: 0270-7306
CID: 6718

A sequence in the rat Pit-1 gene promoter confers synergistic activation by glucocorticoids and protein kinase-C

Jong MT; Raaka BM; Samuels HH
The 5'-flanking region of the gene for Pit-1, a pituitary-specific transcription factor, was isolated from a rat liver genomic library and sequenced. Expression of a reporter construct containing Pit-1 promoter sequences linked to the bacterial chloramphenicol acetyltransferase (CAT) gene was assessed by transient transfection in rat pituitary GH4C1 cells. Treatment of transfected cells with either dexamethasone (DEX) for 48 h or the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) for the final 20 h of the 48-h posttransfection period had minimal effects on CAT expression. However, CAT activity was elevated about 20-fold when transfected cells were treated with both DEX and TPA. This apparent synergistic activation was lost when DEX treatment was also limited to the final 20 h of the 48-h posttransfection period, suggesting that a time-dependent accumulation of a DEX-induced gene product might be involved. This putative DEX-induced product appeared to be relatively stable, because synergistic activation was observed in cells treated with DEX alone for 36 h, followed by a 10-h incubation without DEX before the addition of TPA. The Pit-1 gene promoter region between -210 and -142 from the transcription start site conferred synergistic regulation by DEX and TPA when placed upstream of position -105 in the herpes viral thymidine kinase promoter.(ABSTRACT TRUNCATED AT 250 WORDS)
PMID: 7854349
ISSN: 0888-8809
CID: 7901

Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoic acid receptors from an inhibitory cellular factor

Casanova J; Helmer E; Selmi-Ruby S; Qi JS; Au-Fliegner M; Desai-Yajnik V; Koudinova N; Yarm F; Raaka BM; Samuels HH
The ligand-binding domains of thyroid hormone (L-triiodothyronine [T3]) receptors (T3Rs), all-trans retinoic acid (RA) receptors (RARs), and 9-cis RA receptors (RARs and RXRs) contain a series of heptad motifs thought to be important for dimeric interactions. Using a chimera containing amino acids 120 to 392 of chicken T3R alpha (cT3R alpha) positioned between the DNA-binding domain of the yeast GAL4 protein and the potent 90-amino-acid transactivating domain of the herpes simplex virus VP16 protein (GAL4-T3R-VP16), we provide functional evidence that binding of ligand releases T3Rs and RARs from an inhibitory cellular factor. GAL4-T3R-VP16 does not bind T3 and does not activate transcription from a GAL4 reporter when expressed alone but is able to activate transcription when coexpressed with unliganded T3R or RAR. This activation is reversed by T3 or RA, suggesting that these receptors compete with GAL4-T3R-VP16 for a cellular inhibitor and that ligand reverses this effect by dissociating T3R or RAR from the inhibitor. A chimera containing the entire ligand-binding domain of cT3R alpha (amino acids 120 to 408) linked to VP16 [GAL4-T3R(408)-VP16] is activated by unliganded receptor as well as by T3. In contrast, GAL4-T3R containing the amino acid 120 to 408 ligand-binding region without the VP16 domain is activated only by T3. The highly conserved ninth heptad, which is involved in heterodimerization, appears to participate in the receptor-inhibitor interaction, suggesting that the inhibitor is a related member of the receptor gene family. In striking contrast to T3R and RAR, RXR activates GAL4-T3R-VP16 only with its ligand, 9-cis RA, but unliganded RXR does not appear to be the inhibitor suggested by these studies. Further evidence that an orphan receptor may be the inhibitor comes from our finding that COUP-TF inhibits activation of GAL4-T3R-VP16 by unliganded T3R and the activation of GAL4-T3R by T3. These and other results suggest that an inhibitory factor suppresses transactivation by the T3Rs and RARs while these receptors are bound to DNA and that ligands act, in part, by inactivating or promoting dissociation of a receptor-inhibitor complex
PMCID:359101
PMID: 8065310
ISSN: 0270-7306
CID: 8470