Searched for: in-biosketch:yes
person:sfeira01
Does a sentinel or a subset of short telomeres determine replicative senescence?
Zou, Ying; Sfeir, Agnel; Gryaznov, Sergei M; Shay, Jerry W; Wright, Woodring E
The proliferative life span of human cells is limited by telomere shortening, but the specific telomeres responsible for determining the onset of senescence have not been adequately determined. We here identify the shortest telomeres by the frequency of signal-free ends after in situ hybridization with telomeric probes and demonstrate that probes adjacent to the shortest ends colocalize with gammaH2AX-positive DNA damage foci in senescent cells. Normal BJ cells growth arrest at senescence before developing significant karyotypic abnormalities. We also identify all of the telomeres involved in end-associations in BJ fibroblasts whose cell-cycle arrest at the time of replicative senescence has been blocked and demonstrate that the 10% of the telomeres with the shortest ends are involved in >90% of all end-associations. The failure to find telomeric end-associations in near-senescent normal BJ metaphases, the presence of signal-free ends in 90% of near-senescent metaphases, and the colocalization of short telomeres with DNA damage foci in senescent interphase cells suggests that end-associations rather than damage signals from short telomeres per se may be the proximate cause of growth arrest. These results demonstrate that a specific group of chromosomes with the shortest telomeres rather than either all or only one or two sentinel telomeres is responsible for the induction of replicative senescence
PMCID:491830
PMID: 15181152
ISSN: 1059-1524
CID: 149055
ECM-induced gap junctional communication enhances mammary epithelial cell differentiation
El-Sabban, Marwan E; Sfeir, Agnel J; Daher, Myriam H; Kalaany, Nada Y; Bassam, Rola A; Talhouk, Rabih S
The relationship between gap junctional intercellular communication (GJIC) and mammary cell (CID-9) differentiation in vitro was explored. CID-9 cells differentiate and express beta-casein in an extracellular matrix (ECM)- and hormone-dependent manner. In response to interaction with the ECM, cells in culture modulated the expression of their gap junction proteins at the transcriptional and post-translational levels. In the presence of EHS-matrix, connexins (Cx)26, 32 and 43 localized predominantly to the plasma membrane, and enhanced GJIC [as measured by Lucifer Yellow (LY) dye transfer assays] was noted. Inhibition of GJIC of cells on EHS-matrix with 18 alpha glycyrrhetinic acid (GA) resulted in reversible downregulation of beta-casein expression. In the presence of cAMP, cells cultured on plastic expressed beta-casein, upregulated Cx43 and Cx26 protein levels and enhanced GJIC. This was reversed in the presence of 18 alpha GA. cAMP-treated cells plated either on a non-adhesive PolyHEMA substratum or on plastic supplemented with function-blocking anti-beta 1 integrin antibodies, maintained beta-casein expression. These studies suggest that cell-ECM interaction alone may induce differentiation through changes in cAMP levels and formation of functional gap junctions. That these events are downstream of ECM signalling was underscored by the fact that enhanced GJIC induced partial differentiation in mammary epithelial cells in the absence of an exogenously provided basement membrane and in a beta 1-integrin- and adhesion-independent manner
PMID: 12893812
ISSN: 0021-9533
CID: 149056
Vps9p CUE domain ubiquitin binding is required for efficient endocytic protein traffic
Davies, Brian A; Topp, Justin D; Sfeir, Agnel J; Katzmann, David J; Carney, Darren S; Tall, Gregory G; Friedberg, Andrew S; Deng, Li; Chen, Zhijian; Horazdovsky, Bruce F
Rab5 GTPases are key regulators of protein trafficking through the early stages of the endocytic pathway. The yeast Rab5 ortholog Vps21p is activated by its guanine nucleotide exchange factor Vps9p. Here we show that Vps9p binds ubiquitin and that the CUE domain is necessary and sufficient for this interaction. Vps9p ubiquitin binding is required for efficient endocytosis of Ste3p but not for the delivery of the biosynthetic cargo carboxypeptidase Y to the vacuole. In addition, Vps9p is itself monoubiquitylated. Ubiquitylation is dependent on a functional CUE domain and Rsp5p, an E3 ligase that participates in cell surface receptor endocytosis. These findings define a new ubiquitin binding domain and implicate ubiquitin as a modulator of Vps9p function in the endocytic pathway
PMID: 12654912
ISSN: 0021-9258
CID: 149057