Searched for: in-biosketch:yes
person:sunt01
Altered phenotype of cultured urothelial and other stratified epithelial cells: implications for wound healing
Sun, Tung-Tien
The differentiation of cultured stratified epithelial cells can deviate significantly from that of normal epithelium, leading to suggestions that cultured cells undergo abnormal differentiation, or a truncated differentiation. Thus cultured epidermal and corneal epithelial cells stop synthesizing their tissue-specific keratin pair K1/K10 and K3/K12, respectively. The replacement of these keratins in the suprabasal compartment by K6/K16 keratins that are made by all stratified squamous epithelia during hyperplasia rules out a truncated differentiation. Importantly, the keratin pattern of in vivo corneal epithelium undergoing wound repair mimics that of cultured rabbit corneal epithelial cells. Although cultured urothelial cells continue to synthesize uroplakins, which normally form two-dimensional crystalline urothelial plaques covering almost the entire apical urothelial surface, these proteins do not assemble into crystals in cultured cells. Cultured epithelial cells can, however, rapidly regain normal differentiation on the removal of mitogenic stimuli, the use of a suitable extracellular matrix, or the transplantation of the cells to an in vivo, nonmitogenic environment. These data suggest that cultured epithelial cells adopt altered differentiation patterns mimicking in vivo regenerating or hyperplastic epithelia. Blocking the synthesis of tissue-specific differentiation products, such as the K1 and K10 keratins designed to form extensive disulfide cross-links in cornified cells, or the assembly of uroplakin plaques allows epithelial cells to better migrate and proliferate, activities that are of overriding importance during wound repair. Cultured urothelial and other stratified epithelial cells provide excellent models for studying the regulation of the synthesis and assembly of differentiation products, a key cellular process during epithelial wound repair
PMID: 16609152
ISSN: 1931-857x
CID: 111747
Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution
Min, Guangwei; Wang, Huaibin; Sun, Tung-Tien; Kong, Xiang-Peng
Tetraspanin uroplakins (UPs) Ia and Ib, together with their single-spanning transmembrane protein partners UP II and IIIa, form a unique crystalline 2D array of 16-nm particles covering almost the entire urothelial surface. A 6 A-resolution cryo-EM structure of the UP particle revealed that the UP tetraspanins have a rod-shaped structure consisting of four closely packed transmembrane helices that extend into the extracellular loops, capped by a disulfide-stabilized head domain. The UP tetraspanins form the primary complexes with their partners through tight interactions of the transmembrane domains as well as the extracellular domains, so that the head domains of their tall partners can bridge each other at the top of the heterotetramer. The secondary interactions between the primary complexes and the tertiary interaction between the 16-nm particles contribute to the formation of the UP tetraspanin network. The rod-shaped tetraspanin structure allows it to serve as stable pilings in the lipid sea, ideal for docking partner proteins to form structural/signaling networks
PMCID:2063921
PMID: 16785325
ISSN: 0021-9525
CID: 67387
Novel blood biomarkers of human urinary bladder cancer
Osman, Iman; Bajorin, Dean F; Sun, Tung-Tien; Zhong, Hong; Douglas, Diah; Scattergood, Joseph; Zheng, Run; Han, Mark; Marshall, K Wayne; Liew, Choong-Chin
PURPOSE: Recent data indicate that cDNA microarray gene expression profile of blood cells can reflect disease states and thus have diagnostic value. We tested the hypothesis that blood cell gene expression can differentiate between bladder cancer and other genitourinary cancers as well as between bladder cancer and healthy controls. EXPERIMENTAL DESIGN: We used Affymetrix U133 Plus 2.0 GeneChip (Affymetrix, Santa Clara, CA) to profile circulating blood total RNA from 35 patients diagnosed with one of three types of genitourinary cancer [bladder cancer (n = 16), testicular cancer (n = 10), and renal cell carcinoma (n = 9)] and compared their cDNA profiles with those of 10 healthy subjects. We then verified the expression levels of selected genes from the Affymetrix results in a larger number of bladder cancer patients (n = 40) and healthy controls (n = 27). RESULTS: Blood gene expression profiles distinguished bladder cancer patients from healthy controls and from testicular and renal cancer patients. Differential expression of a combined set of seven gene transcripts (insulin-like growth factor-binding protein 7, sorting nexin 16, chondroitin sulfate proteoglycan 6, and cathepsin D, chromodomain helicase DNA-binding protein 2, nell-like 2, and tumor necrosis factor receptor superfamily member 7) was able to discriminate bladder cancer from control samples with a sensitivity of 83% (95% confidence interval, 67-93%) and a specificity of 93% (95% confidence interval, 76-99%). CONCLUSION: We have shown that the gene expression profile of circulating blood cells can distinguish bladder cancer from other types of genitourinary cancer and healthy controls and can be used to identify novel blood markers for bladder cancer
PMID: 16740760
ISSN: 1078-0432
CID: 68525
Distinct glycan structures of uroplakins Ia and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia
Xie, Bo; Zhou, Ge; Chan, Shiu-Yung; Shapiro, Ellen; Kong, Xiang-Peng; Wu, Xue-Ru; Sun, Tung-Tien; Costello, Catherine E
Although it has been shown that mouse uroplakin (UP) Ia, a major glycoprotein of urothelial apical surface, can serve as the receptor for the FimH lectin adhesin of type 1-fimbriated Escherichia coli, the organism that causes a great majority of urinary tract infections, the glycan structure of this native receptor was unknown. Using a sensitive approach that combines in-gel glycosidase and protease digestions, permethylation of released glycans, and mass spectrometry, we have elucidated for the first time the native glycoform structures of the mouse UPIa receptor and those of its non-binding homolog, UPIb, and have determined the glycosylation site occupancy. UPIa presents a high level of terminally exposed mannose residues (located on Man(6)GlcNAc(2) to Man(9)GlcNAc(2)) that are capable of specifically interacting with FimH. We have shown that this property is conserved not only in the mouse uroplakins but also in cattle and, even more importantly, in human UPIa, thus establishing the concept that UPIa is a major urothelial receptor in humans and other mammals for the mannose-specific FimH variant. In contrast, our results indicate that most terminally exposed glycans of mouse UPIb are non-mannose residues, thus explaining the failure of FimH to bind to this UPIb. In cattle, on the other hand, complex carbohydrates constituted only about 20% of the UPIb N-linked glycans. Human UPIa contained exclusively high mannose glycans, and human UPIb contained only complex glycans. The drastically different carbohydrate processing of the UPIa and UPIb proteins, two closely related members of the tetraspanin family, may reflect differences in their folding and masking due to their interactions with their associated proteins, UPII and UPIIIa, respectively. Results from this study shed light on the molecular pathogenesis of urinary tract infections and may aid in the design of glyco-mimetic inhibitors for preventing and treating this disease
PMID: 16567801
ISSN: 0021-9258
CID: 66476
Irwin Freedberg: physician-scientist and mentor [Historical Article]
Sun, Tung-Tien
PMID: 16482176
ISSN: 0022-202x
CID: 240552
EEDA: A protein associated with an early stage of stratified epithelial differentiation
Sun, Lijie; Ryan, David G; Zhou, Mingyuan; Sun, Tung-Tien; Lavker, Robert M
Using suppressive subtractive hybridization, we have identified a novel gene, which we named early epithelial differentiation associated (EEDA), which is uniquely associated with an early stage of stratified epithelial differentiation. In epidermis, esophageal epithelium, and tongue epithelium, EEDA mRNA, and antigen was abundant in suprabasal cells, but was barely detectable in more differentiated cells. Consistent with the limbal location of corneal epithelial stem cells, EEDA was expressed in basal corneal epithelial cells that are out of the stem cell compartment, as well as the suprabasal corneal epithelial cells. The strongest EEDA expression occurred in suprabasal precortical cells of mouse, bovine, and human anagen follicles. Developmental studies showed that the appearance of EEDA in embryonic mouse epidermis (E 15.5) coincided with morphological keratinization. Interestingly, EEDA expression is turned off when epithelia were perturbed by wounding and by cultivation under both low and high Ca(2+) conditions. Our results indicate that EEDA is involved in the early stages of normal epithelial differentiation, and that EEDA is important for the 'normal' differentiation pathway in a wide range of stratified epithelia. (c) 2005 Wiley-Liss, Inc
PMCID:1523255
PMID: 15920738
ISSN: 0021-9541
CID: 59000
Gene deletion in urothelium by specific expression of Cre recombinase
Mo L; Cheng J; Lee EY; Sun TT; Wu XR
EMBASE:2006103623
ISSN: 0022-5347
CID: 62773
Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement
Liang, Feng-Xia; Bosland, Maarten C; Huang, Hongying; Romih, Rok; Baptiste, Solange; Deng, Fang-Ming; Wu, Xue-Ru; Shapiro, Ellen; Sun, Tung-Tien
Although the epithelial lining of much of the mammalian urinary tract is known simply as the urothelium, this epithelium can be divided into at least three lineages of renal pelvis/ureter, bladder/trigone, and proximal urethra based on their embryonic origin, uroplakin content, keratin expression pattern, in vitro growth potential, and propensity to keratinize during vitamin A deficiency. Moreover, these cells remain phenotypically distinct even after they have been serially passaged under identical culture conditions, thus ruling out local mesenchymal influence as the sole cause of their in vivo differences. During vitamin A deficiency, mouse urothelium form multiple keratinized foci in proximal urethra probably originating from scattered K14-positive basal cells, and the keratinized epithelium expands horizontally to replace the surrounding normal urothelium. These data suggest that the urothelium consists of multiple cell lineages, that trigone urothelium is closely related to the urothelium covering the rest of the bladder, and that lineage heterogeneity coupled with cell migration/replacement form the cellular basis for urothelial squamous metaplasia
PMCID:2171294
PMID: 16330712
ISSN: 0021-9525
CID: 59934
Interpreting epithelial cancer biology in the context of stem cells: tumor properties and therapeutic implications
Miller, Stanley J; Lavker, Robert M; Sun, Tung-Tien
Over 90% of all human neoplasia is derived from epithelia. Significant progress has been made in the identification of stem cells of many epithelia. In general, epithelial stem cells lack differentiation markers, have superior in vivo and in vitro proliferative potential, form clusters in association with a specialized mesenchymal environment (the 'niche'), are located in well-protected and nourished sites, and are slow-cycling and thus can be experimentally identified as 'label-retaining cells'. Stem cells may divide symmetrically giving rise to two identical stem cell progeny. Any stem cells in the niche, which defines the size of the stem cell pool, may be randomly expelled from the niche due to population pressure (the stochastic model). Alternatively, a stem cell may divide asymmetrically yielding one stem cell and one non-stem cell that is destined to exit from the stem cell niche (asymmetric division model). Stem cells separated from their niche lose their stemness, although such a loss may be reversible, becoming 'transit-amplifying cells' that are rapidly proliferating but have a more limited proliferative potential, and can give rise to terminally differentiated cells. The identification of the stem cell subpopulation in a normal epithelium leads to a better understanding of many previously enigmatic properties of an epithelium including the preferential sites of carcinoma formation, as exemplified by the almost exclusive association of corneal epithelial carcinoma with the limbus, the corneal epithelial stem cell zone. Being long-term residents in an epithelium, stem cells are uniquely susceptible to the accumulation of multiple, oncogenic changes giving rise to tumors. The application of the stem cell concept can explain many important carcinoma features including the clonal origin and heterogeneity of tumors, the occasional formation of tumors from the transit amplifying cells or progenitor cells, the formation of precancerous 'patches' and 'fields', the mesenchymal influence on carcinoma formation and behavior, and the plasticity of tumor cells. While the concept of cancer stem cells is extremely useful and it is generally assumed that such cells are derived from normal stem cells, more work is needed to identify and characterize epithelial cancer stem cells, to address their precise relationship with normal stem cells, to study their markers and their proliferative and differentiation properties and to design new therapies that can overcome their unusual resistance to chemotherapy and other conventional tumor modalities
PMID: 16139432
ISSN: 0006-3002
CID: 58999
Gene Deletion in Urothelium by Specific Expression of Cre Recombinase
Mo, Lan; Cheng, Jin; Lee, Eva Y-H P; Sun, Tung-Tien; Wu, Xue-Ru
Urothelium that lines almost the entire urinary tract acts as a permeability barrier and is involved in the pathogenesis of major urinary diseases including urothelial carcinoma, urinary tract infection and interstitial cystitis. However, investigation of urothelial biology and diseases has been hampered by the lack of tissue-specific approaches. To address this deficiency, we sought to develop a urothelium-specific knockout system using the Cre/loxP strategy. Transgenic mouse lines were generated in which a 3.6-kb mouse uroplakin II (UPII) promoter was used to drive the expression of Cre recombinase (Cre). Among the multiple tissues analyzed, Cre was found to be expressed exclusively in the urothelia of the transgenic mice. Crossing a UPII-Cre transgenic line with a ROSA26-LacZ reporter line, in which LacZ expression depends on Cre-mediated deletion of a floxed 'stop' sequence, led to LacZ expression only in the urothelium. Gene recombination was also observed when the UPII-Cre line was crossed to an independent line in which a part of the p53 gene was flanked by the loxP sequences (floxed p53). Truncation of the p53 gene and mRNA were observed exclusively in the urothelia of double transgenic mice harboring both the UPII-Cre transgene and the floxed p53 allele. These results demonstrate for the first time the feasibility and potentially wide applicability of the UPII-Cre transgenic mice to inactivate any genes of interest in the urothelium
PMID: 15840768
ISSN: 1931-857x
CID: 51116