Searched for: in-biosketch:yes
person:tg20
Electronic Cigarette Aerosol Modulates the Oral Microbiome and Increases Risk of Infection
Pushalkar, Smruti; Paul, Bidisha; Li, Qianhao; Yang, Jian; Vasconcelos, Rebeca; Makwana, Shreya; González, Juan Muñoz; Shah, Shivm; Xie, Chengzhi; Janal, Malvin N; Queiroz, Erica; Bederoff, Maria; Leinwand, Joshua; Solarewicz, Julia; Xu, Fangxi; Aboseria, Eman; Guo, Yuqi; Aguallo, Deanna; Gomez, Claudia; Kamer, Angela; Shelley, Donna; Aphinyanaphongs, Yindalon; Barber, Cheryl; Gordon, Terry; Corby, Patricia; Li, Xin; Saxena, Deepak
The trend of e-cigarette use among teens is ever increasing. Here we show the dysbiotic oral microbial ecology in e-cigarette users influencing the local host immune environment compared with non-smoker controls and cigarette smokers. Using 16S rRNA high-throughput sequencing, we evaluated 119 human participants, 40 in each of the three cohorts, and found significantly altered beta-diversity in e-cigarette users (p = 0.006) when compared with never smokers or tobacco cigarette smokers. The abundance of Porphyromonas and Veillonella (p = 0.008) was higher among vapers. Interleukin (IL)-6 and IL-1β were highly elevated in e-cigarette users when compared with non-users. Epithelial cell-exposed e-cigarette aerosols were more susceptible for infection. In vitro infection model of premalignant Leuk-1 and malignant cell lines exposed to e-cigarette aerosol and challenged by Porphyromonas gingivalis and Fusobacterium nucleatum resulted in elevated inflammatory response. Our findings for the first time demonstrate that e-cigarette users are more prone to infection.
PMID: 32105635
ISSN: 2589-0042
CID: 4323572
Cardiopulmonary effects of nanomaterials
Chapter by: Saunders, Eric; Chen, Lung-Chi; Gordon, Terry; Lippmann, Morton
in: Environmental toxicants : human exposures and their health effects by Lippmann, Morton; Leikauf, George D (Eds)
Hoboken, NJ : Wiley, 2020
pp. 695-719
ISBN: 9781119438915
CID: 4584152
The effect of PM 2.5 from three rural USA areas on inflammatory markers in human keratinocytes [Meeting Abstract]
Sun, H.; Kluz, T.; Matsui, M.; Carle, T.; Gan, D.; Gordon, T.; Ortiz, A.; Costa, M.
ISI:000554564400146
ISSN: 0022-202x
CID: 4562122
Analysis of Acrolein Exposure Induced Pulmonary Response in Seven Inbred Mouse Strains and Human Primary Bronchial Epithelial Cells Cultured at Air-Liquid Interface
Johanson, Gunnar; Dwivedi, Aishwarya Mishra; Ernstgård, Lena; Palmberg, Lena; Ganguly, Koustav; Chen, Lung Chi; Galdanes, Karen; Gordon, Terry; Upadhyay, Swapna
Background/UNASSIGNED:Acrolein is a major component of environmental pollutants, cigarette smoke, and is also formed by heating cooking oil. We evaluated the interstrain variability of response to subchronic inhalation exposure to acrolein among inbred mouse strains for inflammation, oxidative stress, and tissue injury responses. Furthermore, we studied the response to acrolein vapor in the lung mucosa model using human primary bronchial epithelial cells (PBEC) cultured at an air-liquid interface (ALI) to evaluate the findings of mouse studies. Methods/UNASSIGNED:< 0.05) in the lung models. Results/UNASSIGNED:in the PBEC-ALI model. Conclusion/UNASSIGNED:The interstrain differences in response to subchronic acrolein exposure in mouse suggest a genetic predisposition. Altered expression of IL-17 pathway genes following acrolein exposure in the PBEC-ALI models indicates that it has a central role in chemical irritant toxicity. The findings also indicate that genetically determined differences in IL-17 signaling pathway genes in the different mouse strains may explain their susceptibility to different chemical irritants.
PMCID:7582059
PMID: 33110918
ISSN: 2314-6141
CID: 4661122
Secondhand smoke exposure in public and private high-rise multiunit housing serving low-income residents in New York City prior to federal smoking ban in public housing, 2018
Anastasiou, Elle; Feinberg, Alexis; Tovar, Albert; Gill, Emily; Ruzmyn Vilcassim, M J; Wyka, Katarzyna; Gordon, Terry; Rule, Ana M; Kaplan, Sue; Elbel, Brian; Shelley, Donna; Thorpe, Lorna E
BACKGROUND:Tobacco remains the leading cause of preventable death in the United States, with 41,000 deaths attributable to secondhand smoke (SHS) exposure. On July 30, 2018, the U.S. Department of Housing and Urban Development passed a rule requiring public housing authorities to implement smoke-free housing (SFH) policies. OBJECTIVES/OBJECTIVE:Prior to SFH policy implementation, we measured self-reported and objective SHS incursions in a purposeful sample of 21 high-rise buildings (>15 floors) in New York City (NYC): 10 public housing and 11 private sector buildings where most residents receive federal housing subsidies (herein 'Section 8' buildings). METHODS:) from low-cost particle monitors. SHS was measured for 7-days in non-smoking households (NYCHA n = 157, Section 8 n = 118 households) and in building common areas (n = 91 hallways and stairwells). RESULTS:was observed between and within buildings; on average nicotine concentrations were higher in NYCHA apartments and hallways than in Section 8 buildings (p < 0.05), and NYCHA residents reported seeing smokers in common areas more frequently. CONCLUSIONS:SFH policies may help in successfully reducing SHS exposure in public housing, but widespread pre-policy incursions suggest achieving SFH will be challenging.
PMID: 31787288
ISSN: 1879-1026
CID: 4240642
In Vitro Models, Standards, and Experimental Methods for Tobacco Products
Aghaloo, T; Kim, J J; Gordon, T; Behrsing, H P
Traditional tobacco products have well-known systemic and local oral effects, including inflammation, vasoconstriction, delayed wound healing, and increased severity of periodontal disease. Specifically in the oral cavity and the lung, cigarette smoking produces cancer, increased infectivity, acute and chronic inflammation, changes in gene expression in epithelial lining cells, and microbiome changes. In recent years, cigarette smoking has greatly decreased in the United States, but the use of new tobacco products has gained tremendous popularity. Without significant knowledge of the oral sequelae of products such as electronic cigarettes, researchers must evaluate current in vitro and in vivo methods to study these agents, as well as develop new tools to adequately study their effects. Some in vitro testing has been performed for electronic cigarettes, including toxicologic models and assays, but these mostly study the effect on the respiratory tract. Recently, direct exposure of the aerosol to in vitro 3-dimensional tissue constructs has been performed, demonstrating changes in cell viability and inflammatory cytokines. For in vivo studies, a universal e-cigarette testing machine or standard vaping regime is needed. A standard research electronic cigarette has recently been developed by the National Institute of Drug Abuse, and other devices delivering aerosols with different nicotine concentrations are becoming available. One of the biggest challenges in this research is keeping up with the new products and the rapidly changing technologies in the industry.
PMID: 31538805
ISSN: 1544-0737
CID: 4097712
Mapping urban air quality using mobile sampling with low-cost sensors and machine learning in Seoul, South Korea
Lim, Chris C; Kim, Ho; Vilcassim, M J Ruzmyn; Thurston, George D; Gordon, Terry; Chen, Lung-Chi; Lee, Kiyoung; Heimbinder, Michael; Kim, Sun-Young
Recent studies have demonstrated that mobile sampling can improve the spatial granularity of land use regression (LUR) models. Mobile sampling campaigns deploying low-cost (<$300) air quality sensors could potentially offer an inexpensive and practical approach to measure and model air pollution concentration levels. In this study, we developed LUR models for street-level fine particulate matter (PM2.5) concentration levels in Seoul, South Korea. 169 h of data were collected from an approximately three week long campaign across five routes by ten volunteers sharing seven AirBeams, a low-cost ($250 per unit), smartphone-based particle counter, while geospatial data were extracted from OpenStreetMap, an open-source and crowd-generated geographical dataset. We applied and compared three statistical approaches in constructing the LUR models - linear regression (LR), random forest (RF), and stacked ensemble (SE) combining multiple machine learning algorithms - which resulted in cross-validation R2 values of 0.63, 0.73, and 0.80, respectively, and identification of several pollution 'hotspots.' The high R2 values suggest that study designs employing mobile sampling in conjunction with multiple low-cost air quality monitors could be applied to characterize urban street-level air quality with high spatial resolution, and that machine learning models could further improve model performance. Given this study design's cost-effectiveness and ease of implementation, similar approaches may be especially suitable for citizen science and community-based endeavors, or in regions bereft of air quality data and preexisting air monitoring networks, such as developing countries.
PMID: 31362154
ISSN: 1873-6750
CID: 4010972
Effects of exposure to direct and secondhand hookah and e-cigarette aerosols on ambient air quality and cardiopulmonary health in adults and children: protocol for a panel study
Shearston, Jenni; Lee, Lily; Eazor, James; Meherally, Saher; Park, Su Hyun; Vilcassim, Mj Ruzmyn; Weitzman, Michael; Gordon, Terry
INTRODUCTION/BACKGROUND:Use of alternative nicotine delivery systems, such as electronic cigarettes and hookahs, has increased dramatically in the USA, but limited research has been conducted on the secondhand effects of these products, especially in children. The objective of this study is to assess the cardiopulmonary effects of e-cigarette and hookah use in vaping and smoking adults, and in non-smoking/non-vaping adults and children exposed to secondhand particles and gases. METHODS AND ANALYSIS/UNASSIGNED:This study uses a pre/post design, with four groups: two control groups (non-smoking/non-vaping and cigarette smoking) and two test groups (hookah smoking and e-cigarette vaping). Participants will be recruited by household, so that each home includes one smoking or vaping adult and one non-smoking/non-vaping adult and/or child (5-18 years). Non-smoking/non-vaping homes include an adult and child who do not smoke or vape and do not live with individuals who do. Air quality measures will be completed during a household smoking or vaping session (ambient air for non-smoking/non-vaping group), while cardiopulmonary measures and biological samples will be taken directly before and after the smoking/vaping session, and again 24 hours later, for all participants. Air quality measures include carbon monoxide, black carbon, particulate matter, trace elements, nicotine and carbonyls; cardiopulmonary measures include heart rate variability, blood pressure, pulmonary function and exhaled carbon monoxide; biological samples will assess cotinine, inflammatory cytokines and biomarkers in urine, saliva and nasal mucosa. ETHICS AND DISSEMINATION/UNASSIGNED:This study was approved by the Institutional Review Board at New York University School of Medicine (s16-02226 and s17-01143). Special attention was given to the inclusion of children, who are likely significantly impacted by the use of these products at home, and thus should be included in research. Results of the study will be distributed at conferences, in peer-reviewed journals and to relevant public health authorities for use in developing policy.
PMID: 31239307
ISSN: 2044-6055
CID: 3963652
Exposure to Greater Air Pollution when Traveling Abroad is Associated with Decreased Lung Function
Vilcassim, M J Ruzmyn; Thurston, George D; Chen, Lung-Chi; Lim, Chris C; Gordon, Terry
PMID: 30864816
ISSN: 1535-4970
CID: 3733182
Exposure to air pollution is associated with adverse cardiopulmonary health effects in international travelers
Vilcassim, M J Ruzmyn; Thurston, George D; Chen, Lung-Chi; Lim, Chris C; Saunders, Eric; Yao, Yixin; Gordon, Terry
BACKGROUND:With the number of annual global travelers reaching 1.2 billion, many individuals encounter greater levels of air pollution when they travel abroad to megacities around the world. This study's objective was to determine if visits to cities abroad with greater levels of air pollution adversely impacts cardiopulmonary health. METHODS:Thirty-four non-smoking, adult, healthy participants who traveled abroad to selected cities from the NYC metropolitan area were pre-trained to measure lung function, blood pressure, heart rate/variability, and record symptoms before, during, and after traveling abroad. Outdoor PM2.5 concentrations were obtained from central monitors in each city. Associations between PM exposure concentrations and cardiopulmonary health endpoints were analyzed using a mixed effects statistical design. RESULTS:East and South Asian cities had significantly higher PM2.5 concentrations compared to pre-travel NYC PM2.5 levels, with maximum concentrations reaching 503 μg/m3. PM exposure-related associations for lung function were statistically significant and strongest between evening FEV1 and same day morning PM2.5 concentrations: a 10 μg/m3 increase in outdoor PM2.5 was associated with a mean decrease of 7 ml. Travel to a highly polluted city (PM2.5 > 100 μg/m3) was associated with a 209 ml reduction in evening FEV1 compared to a low polluted city (PM2.5 < 35 μg/m3). In general, participants who traveled to East and South Asian cities experienced increased respiratory symptoms/scores and changes in heart rate and heart rate variability. CONCLUSIONS:Exposure to increased levels of PM2.5 in cities abroad caused small but statistically significant acute changes in cardiopulmonary function and respiratory symptoms in healthy young adults. These data suggest that travel-related exposure to increased PM2.5 adversely impacts cardiopulmonary health, which may be particularly important for travelers with pre-existing respiratory or cardiac disease.
PMID: 31058996
ISSN: 1708-8305
CID: 3900842