Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:treisj01

Total Results:

80


Liprin-alpha has LAR-independent functions in R7 photoreceptor axon targeting

Hofmeyer, Kerstin; Maurel-Zaffran, Corinne; Sink, Helen; Treisman, Jessica E
In the Drosophila visual system, the color-sensing photoreceptors R7 and R8 project their axons to two distinct layers in the medulla. Loss of the receptor tyrosine phosphatase LAR from R7 photoreceptors causes their axons to terminate prematurely in the R8 layer. Here we identify a null mutation in the Liprin-alpha gene based on a similar R7 projection defect. Liprin-alpha physically interacts with the inactive D2 phosphatase domain of LAR, and this domain is also essential for R7 targeting. However, another LAR-dependent function, egg elongation, requires neither Liprin-alpha nor the LAR D2 domain. Although human and Caenorhabditis elegans Liprin-alpha proteins have been reported to control the localization of LAR, we find that LAR localizes to focal adhesions in Drosophila S2R+ cells and to photoreceptor growth cones in vivo independently of Liprin-alpha. In addition, Liprin-alpha overexpression or loss of function can affect R7 targeting in the complete absence of LAR. We conclude that Liprin-alpha does not simply act by regulating LAR localization but also has LAR-independent functions
PMCID:1544215
PMID: 16864797
ISSN: 0027-8424
CID: 68984

Lipid modification of secreted signaling proteins

Miura, Grant I; Treisman, Jessica E
Proteins of the Hedgehog, Wnt and Epidermal Growth Factor Receptor (EGFR) ligand families are secreted signals that induce concentration-dependent responses in surrounding cells. Although these proteins must diffuse through the aqueous extracellular environment, recent work has shown that hydrophobic lipid modifications are essential for their functions. All three classes of ligands are palmitoylated in the secretory pathway by related enzymes, and Hedgehog also carries a C-terminal cholesterol modification as a result of its autocatalytic cleavage. Palmitoylation is required for Wingless secretion and contributes to the signaling activity of Hedgehog and Wnt3a, but is not required for secretion or receptor activation by the EGFR ligand Spitz. While lipid modifications enhance the long-range activity of Sonic hedgehog, they restrict the range and increase the local concentration of Spitz. We discuss the diverse functions and the possible extent of palmitoylation of secreted ligands
PMCID:2725518
PMID: 16721064
ISSN: 1551-4005
CID: 67531

The novel SAM domain protein Aveugle is required for Raf activation in the Drosophila EGF receptor signaling pathway

Roignant, Jean-Yves; Hamel, Sophie; Janody, Florence; Treisman, Jessica E
Activation of the Raf kinase by GTP-bound Ras is a poorly understood step in receptor tyrosine kinase signaling pathways. One such pathway, the epidermal growth factor receptor (EGFR) pathway, is critical for cell differentiation, survival, and cell cycle regulation in many systems, including the Drosophila eye. We have identified a mutation in a novel gene, aveugle, based on its requirement for normal photoreceptor differentiation. The phenotypes of aveugle mutant cells in the eye and wing imaginal discs resemble those caused by reduction of EGFR pathway function. We show that aveugle is required between ras and raf for EGFR signaling in the eye and for mitogen-activated protein kinase phosphorylation in cell culture. aveugle encodes a small protein with a sterile alpha motif (SAM) domain that can physically interact with the scaffold protein connector enhancer of Ksr (Cnk). We propose that Aveugle acts together with Cnk to promote Raf activation, perhaps by recruiting an activating kinase
PMCID:1447592
PMID: 16600911
ISSN: 0890-9369
CID: 64141

Palmitoylation of the EGFR ligand Spitz by Rasp increases Spitz activity by restricting its diffusion

Miura, Grant I; Buglino, John; Alvarado, Diego; Lemmon, Mark A; Resh, Marilyn D; Treisman, Jessica E
Lipid modifications such as palmitoylation or myristoylation target intracellular proteins to cell membranes. Secreted ligands of the Hedgehog and Wnt families are also palmitoylated; this modification, which requires the related transmembrane acyltransferases Rasp and Porcupine, can enhance their secretion, transport, or activity. We show here that rasp is also essential for the developmental functions of Spitz, a ligand for the Drosophila epidermal growth factor receptor (EGFR). In cultured cells, Rasp promotes palmitate addition to the N-terminal cysteine residue of Spitz, and this cysteine is required for Spitz activity in vivo. Palmitoylation reduces Spitz secretion and enhances its plasma membrane association, but does not alter its ability to activate the EGFR in vitro. In vivo, overexpressed unpalmitoylated Spitz has an increased range of action but reduced activity. These data suggest a role for palmitoylation in restricting Spitz diffusion, allowing its local concentration to reach the threshold required for biological function
PMID: 16459296
ISSN: 1534-5807
CID: 63073

Lightoid and Claret: a rab GTPase and its putative guanine nucleotide exchange factor in biogenesis of Drosophila eye pigment granules

Ma, Jinping; Plesken, Heide; Treisman, Jessica E; Edelman-Novemsky, Irit; Ren, Mindong
To elucidate the biogenetic pathways for the generation of lysosome-related organelles, we have chosen to study the Drosophila eye pigment granules because they are lysosome-related and the fruit fly provides the advantages of a genetic system in which many mutations affect eye color. Here, we report the molecular identification of two classic Drosophila eye-color genes required for pigment granule biogenesis, claret and lightoid; the former encodes a protein containing seven repeats with sequence similarity to those that characterize regulator of chromosome condensation 1 (RCC1, a guanine nucleotide exchange factor for the small GTPase, Ran), and the latter encodes a rab GTPase, Rab-RP1. We demonstrate in transfected cells that Claret, through its RCC1-like domain, interacts preferentially with the nucleotide-free form of Rab-RP1, and this interaction involves Claret's first three RCC1-like repeats that are also critical for Claret's function in pigment granule biogenesis in transgenic rescue experiments. In addition, double-mutant analyses suggest that the gene products of claret and lightoid function in the same pathway, which is different from that of garnet and ruby (which encode the delta- and beta-subunit of the tetrameric adaptor protein 3 complex, respectively). Taken together, our results suggest that Claret functions as a guanine nucleotide exchange factor for Lightoid/Rab-RP1 in an adaptor protein 3-independent vesicular trafficking pathway of pigment granule biogenesis
PMCID:511034
PMID: 15289618
ISSN: 0027-8424
CID: 45311

How to make an eye

Treisman, Jessica E
The eye is an organ of such remarkable complexity and apparently flawless design that it presents a challenge to both evolutionary biologists trying to explain its phylogenetic origins, and developmental biologists hoping to understand its formation during ontogeny. Since the discovery that the transcription factor Pax6 plays a crucial role in specifying the eye throughout the animal kingdom, both groups of biologists have been converging on the conserved mechanisms behind eye formation. Their latest meeting was at the Instituto Juan March in Madrid, at a workshop organized by Walter Gehring (Biozentrum, Basel, Switzerland) and Emili Salo (Universitat de Barcelona, Spain), entitled 'The genetic control of eye development and its evolutionary implications'. The exchange of ideas provided some new insights into the construction and history of the eye
PMID: 15289432
ISSN: 0950-1991
CID: 45312

Coming to our senses

Treisman, Jessica E
Sensory organs are specialized to receive different kinds of input from the outside world. However, common features of their development suggest that they could have a shared evolutionary origin. In a recent paper, Niwa et al. show that three Drosophila adult sensory organs all rely on the spatial signals Decapentaplegic and Wingless to specify their position, and the temporal signal ecdysone to initiate their development. The proneural gene atonal is an important site for integration of these regulatory inputs. These results suggest the existence of a primitive sensory organ precursor, which would differentiate according to the identity of its segment of origin. The authors argue that the eyeless gene controls eye disc identity, indirectly producing an eye from the sensory organ precursor within this disc
PMID: 15273984
ISSN: 0265-9247
CID: 45313

Excessive Myosin activity in mbs mutants causes photoreceptor movement out of the Drosophila eye disc epithelium

Lee, Arnold; Treisman, Jessica E
Neuronal cells must extend a motile growth cone while maintaining the cell body in its original position. In migrating cells, myosin contraction provides the driving force that pulls the rear of the cell toward the leading edge. We have characterized the function of myosin light chain phosphatase, which down-regulates myosin activity, in Drosophila photoreceptor neurons. Mutations in the gene encoding the myosin binding subunit of this enzyme cause photoreceptors to drop out of the eye disc epithelium and move toward and through the optic stalk. We show that this phenotype is due to excessive phosphorylation of the myosin regulatory light chain Spaghetti squash rather than another potential substrate, Moesin, and that it requires the nonmuscle myosin II heavy chain Zipper. Myosin binding subunit mutant cells continue to express apical epithelial markers and do not undergo ectopic apical constriction. In addition, mutant cells in the wing disc remain within the epithelium and differentiate abnormal wing hairs. We suggest that excessive myosin activity in photoreceptor neurons may pull the cell bodies toward the growth cones in a process resembling normal cell migration
PMCID:452583
PMID: 15075368
ISSN: 1059-1524
CID: 43225

A mosaic genetic screen reveals distinct roles for trithorax and polycomb group genes in Drosophila eye development

Janody, Florence; Lee, Jeffrey D; Jahren, Neal; Hazelett, Dennis J; Benlali, Aude; Miura, Grant I; Draskovic, Irena; Treisman, Jessica E
The wave of differentiation that traverses the Drosophila eye disc requires rapid transitions in gene expression that are controlled by a number of signaling molecules also required in other developmental processes. We have used a mosaic genetic screen to systematically identify autosomal genes required for the normal pattern of photoreceptor differentiation, independent of their requirements for viability. In addition to genes known to be important for eye development and to known and novel components of the Hedgehog, Decapentaplegic, Wingless, Epidermal growth factor receptor, and Notch signaling pathways, we identified several members of the Polycomb and trithorax classes of genes encoding general transcriptional regulators. Mutations in these genes disrupt the transitions between zones along the anterior-posterior axis of the eye disc that express different combinations of transcription factors. Different trithorax group genes have very different mutant phenotypes, indicating that target genes differ in their requirements for chromatin remodeling, histone modification, and coactivation factors
PMCID:1470713
PMID: 15020417
ISSN: 0016-6731
CID: 43224

Two subunits of the Drosophila mediator complex act together to control cell affinity

Janody, Florence; Martirosyan, Zara; Benlali, Aude; Treisman, Jessica E
The organizing centers for Drosophila imaginal disc development are created at straight boundaries between compartments; these are maintained by differences in cell affinity controlled by selector genes and intercellular signals. skuld and kohtalo encode homologs of TRAP240 and TRAP230, the two largest subunits of the Drosophila mediator complex; mutations in either gene cause identical phenotypes. We show here that both genes are required to establish normal cell affinity differences at the anterior-posterior and dorsal-ventral compartment boundaries of the wing disc. Mutant cells cross from the anterior to the posterior compartment, and can distort the dorsal-ventral boundary in either the dorsal or ventral direction. The Skuld and Kohtalo proteins physically interact in vivo and have synergistic effects when overexpressed, consistent with a skuld kohtalo double-mutant phenotype that is indistinguishable from either single mutant. We suggest that these two subunits do not participate in all of the activities of the mediator complex, but form a submodule that is required to regulate specific target genes, including those that control cell affinity
PMID: 12835386
ISSN: 0950-1991
CID: 38097