Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:wilsoa02

Total Results:

60


Transcripts encoding K12, v-FLIP, v-cyclin, and the microRNA cluster of Kaposi's sarcoma-associated herpesvirus originate from a common promoter

Pearce, Michael; Matsumura, Satoko; Wilson, Angus C
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three malignancies associated with AIDS and immunosuppression. Tumor cells harbor latent virus and express kaposin (open reading frame [ORF] K12), v-FLIP (ORF 71), v-Cyclin (ORF 72), and latency-associated nuclear antigen (LANA; ORF 73). ORFs 71 to 73 are transcribed as multicistronic RNAs initiating from adjacent constitutive and inducible promoters upstream of ORF 73. Here we characterize a third promoter embedded within the ORF 71-to-73 transcription unit specifying transcripts that encode ORF 71/72 or K12. These transcripts may also be the source of 11 microRNAs arranged as a cluster between K12 and ORF 71. Our studies reveal a complex arrangement of interlaced transcription units, incorporating four important protein-encoding genes required for latency and pathogenesis and the entire KSHV microRNA repertoire
PMCID:1280212
PMID: 16254382
ISSN: 0022-538x
CID: 62365

Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen induces a strong bend on binding to terminal repeat DNA

Wong, Lai-Yee; Wilson, Angus C
During latency, the Kaposi's sarcoma-associated herpesvirus genome is maintained as a circular episome, replicating in synchrony with host chromosomes. Replication requires the latency-associated nuclear antigen (LANA) and an origin of latent DNA replication located in the viral terminal repeats, consisting of two LANA binding sites (LBSs) and a GC-rich sequence. Here, we show that the recruitment of a LANA dimer to high-affinity site LBS-1 bends DNA by 57 degrees and towards the major groove. The cooccupancy of LBS-1 and lower-affinity LBS-2 induces a symmetrical bend of 110 degrees . By changing the origin architecture, LANA may help to assemble a specific nucleoprotein structure important for the initiation of DNA replication
PMCID:1262613
PMID: 16227305
ISSN: 0022-538x
CID: 58978

Activation of the Kaposi's Sarcoma-Associated Herpesvirus Major Latency Locus by the Lytic Switch Protein RTA (ORF50)

Matsumura, Satoko; Fujita, Yuriko; Gomez, Evan; Tanese, Naoko; Wilson, Angus C
Kaposi's sarcoma-associated herpesvirus (KSHV) maintains a latent infection in primary effusion lymphoma cells but can be induced to enter full lytic replication by exposure to a variety of chemical inducing agents or by expression of the KSHV-encoded replication and transcription activator (RTA) protein. During latency, only a few viral genes are expressed, and these include the three genes of the so-called latency transcript (LT) cluster: v-FLIP (open reading frame 71 [ORF71]), v-cyclin (ORF72), and latency-associated nuclear antigen (ORF73). During latency, all three open reading frames are transcribed from a common promoter as part of a multicistronic mRNA. Subsequent alternative mRNA splicing and internal ribosome entry allows for the expression of each protein. Here, we show that transcription of LT cassette mRNA can be induced by RTA through the activation of a second promoter (LT(i)) immediately downstream of the constitutively active promoter (LT(c)). We identified a minimal cis-regulatory region, which overlaps with the promoter for the bicistronic K14/v-GPCR delayed early gene that is transcribed in the opposite direction. In addition to a TATA box at -30 relative to the LT(i) mRNA start sites, we identified three separate RTA response elements that are also utilized by the K14/v-GPCR promoter. Interestingly, LT(i) is unresponsive to sodium butyrate, a potent inducer of lytic replication. This suggests there is a previously unrecognized class of RTA-responsive promoters that respond to direct, but not indirect, induction of RTA. These studies highlight the fact that induction method can influence the precise program of viral gene expression during early events in reactivation and also suggest a mechanism by which RTA contributes to establishment of latency during de novo infections
PMCID:1143749
PMID: 15956592
ISSN: 0022-538x
CID: 56176

Transcriptional activation by the Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen is facilitated by an N-terminal chromatin-binding motif

Wong, Lai-Yee; Matchett, Gerald A; Wilson, Angus C
In immunocompromised patients, infection with Kaposi's sarcoma-associated herpesvirus (KSHV) can give rise to Kaposi's sarcoma and several lymphoproliferative disorders. In these tumors, KSHV establishes a latent infection in many of the rapidly proliferating and morphologically abnormal cells. Only a few viral gene products are expressed by the latent virus, and one of the best characterized is the latency-associated nuclear antigen (LANA), a nuclear protein required for the maintenance of viral episomal DNA in the dividing host cell. LANA can also activate or repress an assortment of cellular and viral promoters and may contribute to pathogenesis by allowing the proliferation and survival of host cells. Here we show that activation of the human E2F1 and cyclin-dependent kinase-2 (CDK2) promoters requires elements from both the N- and C-terminal regions of LANA. Deletion of the first 22 amino acids, which are necessary for episome tethering, does not affect nuclear localization but significantly reduces transactivation. Within the deleted peptide, we have identified a short sequence, termed the chromatin-binding motif (CBM), that binds tightly to interphase and mitotic chromatin. A second chromatin-binding activity resides in the C terminus but is not sufficient for optimal transactivation. Alanine substitutions within the CBM reveal a close correlation between the transactivation and chromatin binding activities, implying a mechanistic link. In contrast to promoter activation, we find that the 223 amino acids of the LANA C terminus are sufficient to inhibit p53-mediated activation of the human BAX promoter, indicating that the CBM is not required for all transcription-related functions
PMCID:514975
PMID: 15331740
ISSN: 0022-538x
CID: 45302

HCF-1 functions as a coactivator for the zinc finger protein Krox20

Luciano, Randy L; Wilson, Angus C
HCF-1 is a transcriptional cofactor required for activation of herpes simplex virus immediate-early genes by VP16 as well as less clearly defined roles in cell proliferation, cytokinesis, and spliceosome formation. It is expressed as a large precursor that undergoes proteolysis to yield two subunits that remain stably associated. VP16 uses a degenerate 4-amino acid sequence, known as the HCF-binding motif, to bind to a six-bladed beta-propeller domain at the N terminus of HCF-1. Functional HCF-binding motifs are also found in LZIP and Zhangfei, two cellular bZIP transcription factors of unknown function. Here we show that the HCF-binding motif occurs in a wide spectrum of DNA-binding proteins and transcriptional cofactors. Three well characterized examples were further analyzed for their ability to use HCF-1 as a coactivator. Krox20, a zinc finger transcription factor required for Schwann cell differentiation, and E2F4, a cell cycle regulator, showed a strong requirement for functional HCF-1 to activate transcription. In contrast, activation by estrogen receptor-alpha did not display HCF dependence. In Krox20, the HCF-binding motif lies within the N-terminal activation domain and mutation of this sequence diminishes both transactivation and association with the HCF-1 beta-propeller. The activation domain in the C-terminal subunit of HCF-1 contributes to activation by Krox20, possibly through recruitment of p300. These results suggest that HCF-1 is recruited by many different classes of cellular transcription factors and is therefore likely to be required for a variety of cellular processes including cell cycle progression and development
PMCID:4291123
PMID: 14532282
ISSN: 0021-9258
CID: 48178

Molecular cloning of Drosophila HCF reveals proteolytic processing and self-association of the encoded protein

Mahajan, Shahana S; Johnson, Kristina M; Wilson, Angus C
HCF-1 functions as a coactivator for herpes simplex virus VP16 and a number of mammalian transcription factors. Mature HCF-1 is composed of two subunits generated by proteolytic cleavage of a larger precursor at six centrally-located HCF(PRO) repeats. The resulting N- and C-terminal subunits remain tightly associated via two complementary pairs of self-association domains: termed SAS1N-SAS1C and SAS2N-SAS2C. Additional HCF proteins have been identified in mammals (HCF-2) and Caenorhabditis elegans (CeHCF). Both contain well-conserved SAS1 domains but do not undergo proteolytic processing. Thus, the significance of the cleavage and self-association of HCF-1 remains enigmatic. Here, we describe the isolation of the Drosophila HCF homologue (dHCF) using a genetic screen based on conservation of the SAS1 interaction. The N-terminal beta-propeller domain of dHCF supports VP16-induced complex formation and is more similar to mammalian HCF-1 than other homologues. We show that full-length dHCF expressed in Drosophila cells undergoes proteolytic cleavage giving rise to tightly associated N- and C-terminal subunits. As with HCF-1, the SAS1N and SAS1C elements of dHCF are separated by a large central region, however, this sequence lacks obvious homology to the HCF(PRO) repeats required for HCF-1 cleavage. The conservation of HCF processing in insect cells argues that formation of separate N- and C-terminal subunits is important for HCF function
PMCID:4407374
PMID: 12494450
ISSN: 0021-9541
CID: 35188

Interaction of HCF-1 with a cellular nuclear export factor

Mahajan, Shahana S; Little, Markus M; Vazquez, Rafael; Wilson, Angus C
HCF-1 is a cellular protein required by VP16 to activate the herpes simplex virus (HSV) immediate-early genes. VP16 is a component of the viral tegument and, after release into the cell, binds to HCF-1 and translocates to the nucleus to form a complex with the POU domain protein Oct-1 and a VP16-responsive DNA sequence. This VP16-induced complex boosts transcription of the viral immediate-early genes and initiates lytic replication. In uninfected cells, HCF-1 functions as a coactivator for the cellular transcription factors LZIP and GABP and also plays an essential role in cell proliferation. VP16 and LZIP share a tetrapeptide HCF-binding motif recognized by the beta-propeller domain of HCF-1. Here we describe a new cellular HCF-1 beta-propeller domain binding protein, termed HPIP, which contains a functional HCF-binding motif and a leucine-rich nuclear export sequence. We show that HPIP shuttles between the nucleus and cytoplasm in a CRM1-dependent manner and that overexpression of HPIP leads to accumulation of HCF-1 in the cytoplasm. These data suggest that HPIP regulates HCF-1 activity by modulating its subcellular localization. Furthermore, HPIP-mediated export may provide the pool of cytoplasmic HCF-1 required for import of virion-derived VP16 into the nucleus
PMCID:4291127
PMID: 12235138
ISSN: 0021-9258
CID: 39404

An activation domain in the C-terminal subunit of HCF-1 is important for transactivation by VP16 and LZIP

Luciano, Randy L; Wilson, Angus C
In herpes simplex virus, lytic replication is initiated by the viral transactivator VP16 acting with cellular cofactors Oct-1 and HCF-1. Although this activator complex has been studied in detail, the role of HCF-1 remains elusive. Here, we show that HCF-1 contains an activation domain (HCF-1(AD)) required for maximal transactivation by VP16 and its cellular counterpart LZIP. Expression of the VP16 cofactor p300 augments HCF-1(AD) activity, suggesting a mechanism of synergy. Infection of cells lacking the HCF-1(AD) leads to reduced viral immediate-early gene expression and lowered viral titers. These findings underscore the importance of HCF-1 to herpes simplex virus replication and VP16 transactivation
PMCID:129685
PMID: 12271126
ISSN: 0027-8424
CID: 39588

Transcription

Tanese N; Wilson AC
ORIGINAL:0004131
ISSN: 0076-2016
CID: 19699

N-terminal transcriptional activation domain of LZIP comprises two LxxLL motifs and the Host Cell Factor-1 binding motif

Luciano RL; Wilson AC
Host Cell Factor-1 (HCF-1, C1) was first identified as a cellular target for the herpes simplex virus transcriptional activator VP16. Association between HCF and VP16 leads to the assembly of a multiprotein enhancer complex that stimulates viral immediate-early gene transcription. HCF-1 is expressed in all cells and is required for progression through G(1) phase of the cell cycle. In addition to VP16, HCF-1 associates with a cellular bZIP protein known as LZIP (or Luman). Both LZIP and VP16 contain a four-amino acid HCF-binding motif, recognized by the N-terminal beta-propeller domain of HCF-1. Herein, we show that the N-terminal 92 amino acids of LZIP contain a potent transcriptional activation domain composed of three elements: the HCF-binding motif and two LxxLL motifs. LxxLL motifs are found in a number of transcriptional coactivators and mediate protein-protein interactions, notably recognition of the nuclear hormone receptors. LZIP is an example of a sequence-specific DNA-binding protein that uses LxxLL motifs within its activation domain to stimulate transcription. The LxxLL motifs are not required for association with the HCF-1 beta-propeller and instead interact with other regions in HCF-1 or recruit additional cofactors
PMCID:27096
PMID: 10984507
ISSN: 0027-8424
CID: 11503