Searched for: in-biosketch:yes
person:wilsod05
Neurofilament light interaction with GluN1 modulates neurotransmission and schizophrenia-associated behaviors
Yuan, Aidong; Sershen, Henry; Basavarajappa, Balapal S; Smiley, John F; Hashim, Audrey; Bleiwas, Cynthia; Berg, Martin; Guifoyle, David N; Subbanna, Shivakumar; Darji, Sandipkumar; Kumar, Asok; Rao, Mala V; Wilson, Donald A; Julien, Jean-Pierre; Javitt, Daniel C; Nixon, Ralph A
Neurofilament (NFL) proteins have recently been found to play unique roles in synapses. NFL is known to interact with the GluN1 subunit of N-methyl-D-aspartic acid (NMDAR) and be reduced in schizophrenia though functional consequences are unknown. Here we investigated whether the interaction of NFL with GluN1 modulates synaptic transmission and schizophrenia-associated behaviors. The interaction of NFL with GluN1 was assessed by means of molecular, pharmacological, electrophysiological, magnetic resonance spectroscopy (MRS), and schizophrenia-associated behavior analyses. NFL deficits cause an NMDAR hypofunction phenotype including abnormal hippocampal function, as seen in schizophrenia. NFL-/- deletion in mice reduces dendritic spines and GluN1 protein levels, elevates ubiquitin-dependent turnover of GluN1 and hippocampal glutamate measured by MRS, and depresses hippocampal long-term potentiation. NMDAR-related behaviors are also impaired, including pup retrieval, spatial and social memory, prepulse inhibition, night-time activity, and response to NMDAR antagonist, whereas motor deficits are minimal. Importantly, partially lowering NFL in NFL+/- mice to levels seen regionally in schizophrenia, induced similar but milder NMDAR-related synaptic and behavioral deficits. Our findings support an emerging view that central nervous system neurofilament subunits including NFL in the present report, serve distinctive, critical roles in synapses relevant to neuropsychiatric diseases.
PMCID:6109052
PMID: 30143609
ISSN: 2158-3188
CID: 3246612
Human apolipoprotein E genotype differentially affects olfactory behavior and sensory physiology in mice
East, Brett S; Fleming, Gloria; Peng, Kathy; Olofsson, Jonas K; Levy, Efrat; Mathews, Paul M; Wilson, Donald A
Apolipoprotein E (ApoE) is an important lipid carrier in both the periphery and the brain. The ApoE ε4 allele (ApoE4) is the single most important genetic risk-factor for Alzheimer's disease (AD) while the ε 2 allele (ApoE2) is associated with a lower risk of AD-related neurodegeneration compared to the most common variant, ε 3 (ApoE3). ApoE genotype affects a variety of neural circuits; however, the olfactory system appears to provide early biomarkers of ApoE genotype effects. Here, we directly compared olfactory behavior and olfactory system physiology across all three ApoE genotypes in 6-month- and 12-month-old mice with targeted replacement for the human ApoE2, ApoE3, or ApoE4 genes. Odor investigation and habituation were assessed, along with, olfactory bulb and piriform cortical local field potential activity. The results demonstrate that while initial odor investigation was unaffected by ApoE genotype, odor habituation was impaired in E4 relative to E2 mice, with E3 mice intermediate in function. There was also significant deterioration of odor habituation from 6 to 12 months of age regardless of the ApoE genotype. Olfactory system excitability and odor responsiveness were similarly determined by ApoE genotype, with an ApoE4 > ApoE3 > ApoE2 excitability ranking. Although motivated behavior is influenced by many processes, hyper-excitability of ApoE4 mice may contribute to impaired odor habituation, while hypo-excitability of ApoE2 mice may contribute to its protective effects. Given that these ApoE mice do not have AD pathology, our results demonstrate how ApoE affects the olfactory system at early stages, prior to the development of AD.
PMCID:5959295
PMID: 29678753
ISSN: 1873-7544
CID: 3043232
Thalamic contribution to odor-guided behavior in rats [Meeting Abstract]
Courtiol, Emmanuelle; Wilson, Donald A.
ISI:000431236000023
ISSN: 0379-864x
CID: 3113822
Human Olfaction: It Takes Two Villages
Olofsson, Jonas K; Wilson, Donald A
Human olfaction is sensitive but poorly encoded by language. A new study comparing horticulturalists and hunter-gatherers suggests that the strength of odor language is dependent on life-style. This work may stimulate olfactory research at the crossroads between biology and culture.
PMID: 29408254
ISSN: 1879-0445
CID: 2947592
Publisher Correction: Task-Correlated Cortical Asymmetry and Intra- and Inter-Hemispheric Separation
Cohen, Yaniv; Wilson, Donald A
A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.
PMCID:5797176
PMID: 29396423
ISSN: 2045-2322
CID: 2947462
Developmental Ethanol-Induced Sleep Fragmentation, Behavioral Hyperactivity, Cognitive Impairment and Parvalbumin Cell Loss are Prevented by Lithium Co-treatment
Lewin, M; Ilina, M; Betz, J; Masiello, K; Hui, M; Wilson, D A; Saito, M
Developmental ethanol exposure is a well-known cause of lifelong cognitive deficits, behavioral hyperactivity, emotional dysregulation, and more. In healthy adults, sleep is thought to have a critical involvement in each of these processes. Our previous work has demonstrated that some aspects of cognitive impairment in adult mice exposed at postnatal day 7 (P7) to ethanol (EtOH) correlate with slow-wave sleep (SWS) fragmentation (Wilson et al., 2016). We and others have also previously demonstrated that co-treatment with LiCl on the day of EtOH exposure prevents many of the anatomical and physiological impairments observed in adults. Here we explored cognitive function, diurnal rhythms (activity, temperature), SWS, and parvalbumin (PV) and perineuronal net (PNN)-positive cell densities in adult mice that had received a single day of EtOH exposure on P7 and saline-treated littermate controls. Half of the animals also received a LiCl injection on P7. The results suggest that developmental EtOH resulted in adult behavioral hyperactivity, cognitive impairment, and reduced SWS compared to saline controls. Both of these effects were reduced by LiCl treatment on the day of EtOH exposure. Finally, developmental EtOH resulted in decreased PV/PNN-expressing cells in retrosplenial (RS) cortex and dorsal CA3 hippocampus at P90. As with sleep and behavioral activity, LiCl treatment reduced this decrease in PV expression. Together, these results further clarify the long-lasting effects of developmental EtOH on adult behavior, physiology, and anatomy. Furthermore, they demonstrate the neuroprotective effects of LiCl co-treatment on this wide range of developmental EtOH's long-lasting consequences.
PMCID:5766420
PMID: 29183826
ISSN: 1873-7544
CID: 2798102
Maternal Regulation of Pups' Cortical Activity: Role of Serotonergic Signaling
Courtiol, Emmanuelle; Wilson, Donald A; Shah, Relish; Sullivan, Regina M; Teixeira, Catia M
A developing brain shows intense reorganization and heightened neuronal plasticity allowing for environmental modulation of its development. During early life, maternal care is a key factor of this environment and defects in this care can derail adaptive brain development and may result in susceptibility to neuropsychiatric disorders. Nevertheless, the mechanisms by which those maternal interactions immediately impact the offspring's brain activity to initiate the pathway to pathology are not well understood. We do know that multiple neurotransmitter systems are involved, including the serotonergic system, a key neuromodulator involved in brain development and emotional regulation. We tested the importance of the serotonergic system and pups' immediate neural response to maternal presence using wireless electrophysiological recordings, a novel approach allowing us to record neural activity during pups' interactions with their mother. We found that maternal contact modulates the P10-P12 rat pups' anterior cingulate cortex (ACC) activity by notably increasing local-field potential (LFP) power in low-frequency bands. We demonstrated, by blocking serotonergic receptors, that this increase is mediated through 5-HT2 receptors (5-HT2Rs). Finally, we showed in isolated pups that enhancing serotonergic transmission, using a selective-serotonin-reuptake-inhibitor, is sufficient to enhance LFP power in low-frequency bands in a pattern similar to that observed when the mother is in the nest. Our results highlight a significant contribution of the serotonergic system in mediating changes of cortical activity in pups related to maternal presence.
PMCID:6071199
PMID: 30073196
ISSN: 2373-2822
CID: 3215452
Task-Correlated Cortical Asymmetry and Intra- and Inter-Hemispheric Separation
Cohen, Yaniv; Wilson, Donald A
Cerebral lateralization is expressed at both the structural and functional levels, and can exist as either a stable characteristic or as a dynamic feature during behavior and development. The anatomically relatively simple olfactory system demonstrates lateralization in both human and non-human animals. Here, we explored functional lateralization in both primary olfactory cortex - a region critical for odor memory and perception- and orbitofrontal cortex (OFC) - a region involved in reversal learning- in rats performing an odor learning and reversal task. We find significant asymmetry in both olfactory and orbitofrontal cortical odor-evoked activity, which is expressed in a performance- and task-dependent manner. The emergence of learning-dependent asymmetry during reversal learning was associated with decreased functional connectivity both between the bilateral OFC and between the OFC-olfactory cortex. The results suggest an inter-hemispheric asymmetry and olfactory cortical functional separation that may allow multiple, specialized processing circuits to emerge during a reversal task requiring behavioral flexibility.
PMCID:5668373
PMID: 29097760
ISSN: 2045-2322
CID: 2764922
Default mode network deactivation during odor-visual association
Karunanayaka, Prasanna R; Wilson, Donald A; Tobia, Michael J; Martinez, Brittany E; Meadowcroft, Mark D; Eslinger, Paul J; Yang, Qing X
Default mode network (DMN) deactivation has been shown to be functionally relevant for goal-directed cognition. In this study, the DMN's role during olfactory processing was investigated using two complementary functional magnetic resonance imaging (fMRI) paradigms with identical timing, visual-cue stimulation, and response monitoring protocols. Twenty-nine healthy, non-smoking, right-handed adults (mean age = 26 +/- 4 years, 16 females) completed an odor-visual association fMRI paradigm that had two alternating odor + visual and visual-only trial conditions. During odor + visual trials, a visual cue was presented simultaneously with an odor, while during visual-only trial conditions the same visual cue was presented alone. Eighteen of the twenty-nine participants (mean age = 27.0 +/- 6.0 years, 11 females) also took part in a control no-odor fMRI paradigm that consisted of a visual-only trial condition which was identical to the visual-only trials in the odor-visual association paradigm. Independent Component Analysis (ICA), extended unified structural equation modeling (euSEM), and psychophysiological interaction (PPI) were used to investigate the interplay between the DMN and olfactory network. In the odor-visual association paradigm, DMN deactivation was evoked by both the odor + visual and visual-only trial conditions. In contrast, the visual-only trials in the no-odor paradigm did not evoke consistent DMN deactivation. In the odor-visual association paradigm, the euSEM and PPI analyses identified a directed connectivity between the DMN and olfactory network which was significantly different between odor + visual and visual-only trial conditions. The results support a strong interaction between the DMN and olfactory network and highlights the DMN's role in task-evoked brain activity and behavioral responses during olfactory processing. Hum Brain Mapp, 2016. (c) 2016 Wiley Periodicals, Inc.
PMCID:5326664
PMID: 27785847
ISSN: 1097-0193
CID: 2288772
The Olfactory Mosaic: Bringing an Olfactory Network Together for Odor Perception
Courtiol, Emmanuelle; Wilson, Donald A
Olfactory perception and its underlying neural mechanisms are not fixed, but rather vary over time, dependent on various parameters such as state, task, or learning experience. In olfaction, one of the primary sensory areas beyond the olfactory bulb is the piriform cortex. Due to an increasing number of functions attributed to the piriform cortex, it has been argued to be an associative cortex rather than a simple primary sensory cortex. In fact, the piriform cortex plays a key role in creating olfactory percepts, helping to form configural odor objects from the molecular features extracted in the nose. Moreover, its dynamic interactions with other olfactory and nonolfactory areas are also critical in shaping the olfactory percept and resulting behavioral responses. In this brief review, we will describe the key role of the piriform cortex in the larger olfactory perceptual network, some of the many actors of this network, and the importance of the dynamic interactions among the piriform-trans-thalamic and limbic pathways.
PMCID:5362339
PMID: 27687814
ISSN: 1468-4233
CID: 2262742