Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:schmia1000

Total Results:

436


The biology of the receptor for advanced glycation end products and its ligands

Schmidt, A M; Yan, S D; Yan, S F; Stern, D M
Receptor for advanced glycation end products (RAGE) is a multiligand member of the immunoglobulin superfamily of cell surface molecules whose repertoire of ligands includes advanced glycation end products (AGEs), amyloid fibrils, amphoterins and S100/calgranulins. The overlapping distribution of these ligands and cells overexpressing RAGE results in sustained receptor expression which is magnified via the apparent capacity of ligands to upregulate the receptor. We hypothesize that RAGE-ligand interaction is a propagation factor in a range of chronic disorders, based on the enhanced accumulation of the ligands in diseased tissues. For example, increased levels of AGEs in diabetes and renal insufficiency, amyloid fibrils in Alzheimer's disease brain, amphoterin in tumors and S100/calgranulins at sites of inflammation have been identified. The engagement of RAGE by its ligands can be considered the 'first hit' in a two-stage model, in which the second phase of cellular perturbation is mediated by superimposed accumulation of modified lipoproteins (in atherosclerosis), invading bacterial pathogens, ischemic stress and other factors. Taken together, these 'two hits' eventuate in a cellular response with a propensity towards tissue destruction rather than resolution of the offending pathogenic stimulus. Experimental data are cited regarding this hypothesis, though further studies will be required, especially with selective low molecular weight inhibitors of RAGE and RAGE knockout mice, to obtain additional proof in support of our concept
PMID: 11108954
ISSN: 0006-3002
CID: 140629

beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1

Giri, R; Shen, Y; Stins, M; Du Yan, S; Schmidt, A M; Stern, D; Kim, K S; Zlokovic, B; Kalra, V K
In patients with amyloid beta-related cerebrovascular disorders, e.g. , Alzheimer's disease, one finds increased deposition of amyloid peptide (Abeta) and increased presence of monocyte/microglia cells in the brain. However, relatively little is known of the role of Abeta in the trafficking of monocytes across the blood-brain barrier (BBB). Our studies show that interaction of Abeta(1-40) with monolayer of human brain endothelial cells results in augmented adhesion and transendothelial migration of monocytic cells (THP-1 and HL-60) and peripheral blood monocytes. The Abeta-mediated migration of monocytes was inhibited by antibody to Abeta receptor (RAGE) and platelet endothelial cell adhesion molecule (PECAM-1). Additionally, Abeta-induced transendothelial migration of monocytes were inhibited by protein kinase C inhibitor and augmented by phosphatase inhibitor. We conclude that interaction of Abeta with RAGE expressed on brain endothelial cells initiates cellular signaling leading to the transendothelial migration of monocytes. We suggest that increased diapedesis of monocytes across the BBB in response to Abeta present either in the peripheral circulation or in the brain parenchyma may play a role in the pathophysiology of Abeta-related vascular disorder
PMID: 11078691
ISSN: 0363-6143
CID: 140627

Cellular cofactors potentiating induction of stress and cytotoxicity by amyloid beta-peptide

Yan, S D; Roher, A; Chaney, M; Zlokovic, B; Schmidt, A M; Stern, D
Insights into factors underlying causes of familial Alzheimer's disease (AD), such as mutant forms of beta-amyloid precursor protein and presenilins, and those conferring increased risk of sporadic AD, such as isoforms of apolipoprotein E and polymorphisms of alpha2-macroglobulin, have been rapidly emerging. However, mechanisms through which amyloid beta-peptide (Abeta), the fibrillogenic peptide most closely associated with neurotoxicity in AD, exerts its effects on cellular targets have only been more generally outlined. Late in the course of AD, when Abeta fibrils are abundant, non-specific interactions of amyloid with cellular elements are likely to induce broad cytotoxicity. However, early in AD, when concentrations of Abeta are much lower and extracellular deposits are infrequent, mechanisms underlying cellular dysfunction have not been clearly defined. The key issue in elucidating the means through which Abeta perturbs cellular properties early in AD is the possibility that protective therapy at such times may prevent cytotoxicity at a point when damage is still reversible. This brief review focusses on two cellular cofactors for Abeta-induced cellular perturbation: the cell surface immunoglobulin superfamily molecule RAGE (receptor for advanced glycation endproducts) and ABAD (Abeta binding alcohol dehydrogenase). Although final proof for the involvement of these cofactors in cellular dysfunction in AD must await the results of further in vivo experiments, their increased expression in AD brain, as well as other evidence described below, suggests the possibility of specific pathways for Abeta-induced cellular perturbation which could provide future therapeutic targets
PMID: 10899440
ISSN: 0006-3002
CID: 140625

Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis

Yan, S D; Zhu, H; Zhu, A; Golabek, A; Du, H; Roher, A; Yu, J; Soto, C; Schmidt, A M; Stern, D; Kindy, M
Accumulation of fibrils composed of amyloid A in tissues resulting in displacement of normal structures and cellular dysfunction is the characteristic feature of systemic amyloidoses. Here we show that RAGE, a multiligand immunoglobulin superfamily cell surface molecule, is a receptor for the amyloidogenic form of serum amyloid A. Interactions between RAGE and amyloid A induced cellular perturbation. In a mouse model, amyloid A accumulation, evidence of cell stress and expression of RAGE were closely linked. Antagonizing RAGE suppressed cell stress and amyloid deposition in mouse spleens. These data indicate that RAGE is a potential target for inhibiting accumulation of amyloid A and for limiting cellular dysfunction induced by amyloid A
PMID: 10835680
ISSN: 1078-8956
CID: 140623

RAGE: a multiligand receptor contributing to the cellular response in diabetic vasculopathy and inflammation

Schmidt, A M; Hofmann, M; Taguchi, A; Yan, S D; Stern, D M
RAGE is a multiligand member of the immunoglobulin superfamily of cell surface molecules whose properties extend the paradigm of ligand-receptor interactions. The receptor recognizes families of ligands with diverse structural features, such as advanced glycation endproducts (AGEs), amyloidogenic peptides/polypeptides, amphoterins, and S100/calgranulins rather than individual species. Engagement of RAGE by its ligands upregulates the receptor and initiates a cycle of sustained cellular perturbation; increased levels of RAGE on the cell surface make it an ideal target for subsequent ligand interactions and for propagating cellular dysfunction. At this time, the only means known to break this apparently vicious cycle appears to be blocking access to RAGE or removing the ligands. Taken together, these data suggest that RAGE has the potential to function as a progression factor in a range of disorders (AGEs are relevant to diabetes and other settings of oxidant stress, amyloidogenic peptides are relevant to amyloidoses, S100/calgranulins are relevant to inflammatory disorders, etc.) in which its ligands accumulate. The chronic juxtaposition of ligand and receptor triggers sustained cellular perturbation favoring mechanisms eventuating in tissue injury rather than those that would restore homeostasis
PMID: 11129404
ISSN: 0094-6176
CID: 140631

Cellular cofactors for amyloid beta-peptide-induced cell stress. Moving from cell culture to in vivo

Yan, S D; Roher, A; Schmidt, A M; Stern, D M
PMCID:1866992
PMID: 10550293
ISSN: 0002-9440
CID: 140620

N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression

Kislinger, T; Fu, C; Huber, B; Qu, W; Taguchi, A; Du Yan, S; Hofmann, M; Yan, S F; Pischetsrieder, M; Stern, D; Schmidt, A M
Recent studies suggested that interruption of the interaction of advanced glycation end products (AGEs), with the signal-transducing receptor receptor for AGE (RAGE), by administration of the soluble, extracellular ligand-binding domain of RAGE, reversed vascular hyperpermeability and suppressed accelerated atherosclerosis in diabetic rodents. Since the precise molecular target of soluble RAGE in those settings was not elucidated, we tested the hypothesis that predominant specific AGEs within the tissues in disorders such as diabetes and renal failure, N(epsilon)-(carboxymethyl)lysine (CML) adducts, are ligands of RAGE. We demonstrate here that physiologically relevant CML modifications of proteins engage cellular RAGE, thereby activating key cell signaling pathways such as NF-kappaB and modulating gene expression. Thus, CML-RAGE interaction triggers processes intimately linked to accelerated vascular and inflammatory complications that typify disorders in which inflammation is an established component
PMID: 10531386
ISSN: 0021-9258
CID: 140619

Soluble cellular adhesion molecules in proliferative vitreoretinopathy and proliferative diabetic retinopathy

Barile GR; Chang SS; Park LS; Reppucci VS; Schiff WM; Schmidt AM
PURPOSE. To measure vitreous levels of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cellular adhesion molecule-1 (sVCAM-1) in the eyes of patients with retinal detachment (RD) due to proliferative diabetic retinopathy (PDR) or proliferative vitreoretinopathy (PVR) and to determine whether the levels of these mediators correlated with clinical parameters of disease. METHODS. Undiluted vitreous specimens were collected from 50 eyes of 48 patients undergoing vitrectomy for traction RD due to PDR (21 specimens) and recurrent RD due to PVR (19 specimens). Control vitreous specimens were obtained from patients undergoing macular hole repair (10 specimens). The levels of sICAM-1 and sVCAM-1 were measured in each sample by specific enzyme-linked immunoadsorbent assays. RESULTS. Vitreous levels of sICAM-1 were significantly increased in vitreous specimens from both PVR (median +/- SD; 12.0 +/- 76.3 ng/ml; P < 0.01) and PDR (8.4 +/- 24.0 ng/ml; P < 0.01) when compared to vitreous from eyes with macular holes (0. 3 +/- 4.2 ng/ml). Vitreous levels of sVCAM-1 were significantly increased in both PVR (36.5 +/- 255.2 ng/ml; P < 0.001) and PDR (26. 2 +/- 93.5 ng/ml; P < 0.01) when compared to control vitreous (17.7 +/- 7.8 ng/ml). The vitreous levels of sICAM-1 were higher in cases of PDR which developed recurrent proliferative disease (P < 0.01) and recurrent RD (P = 0.01), whereas the levels of sICAM-1 in PVR and sVCAM-1 in PDR and PVR did not significantly correlate with these clinical parameters. CONCLUSIONS. Soluble forms of ICAM-1 and VCAM-1 are increased in the vitreous cavity of patients with RD due to PDR or PVR, reflecting the inflammatory nature of these conditions and suggesting a possible role for these mediators in the pathogenesis of proliferative retinal disease. The vitreous levels of these sCAMs at the time of surgery may serve as a marker of inflammation, but their specific levels do not predict the likelihood of recurrent proliferation or surgical anatomic success in most cases of PVR and PDR
PMID: 10487959
ISSN: 0271-3683
CID: 59362

Targeted inhibition of intrinsic coagulation limits cerebral injury in stroke without increasing intracerebral hemorrhage

Choudhri, T F; Hoh, B L; Prestigiacomo, C J; Huang, J; Kim, L J; Schmidt, A M; Kisiel, W; Connolly, E S; Pinsky, D J
Agents that restore vascular patency in stroke also increase the risk of intracerebral hemorrhage (ICH). As Factor IXa is a key intermediary in the intrinsic pathway of coagulation, targeted inhibition of Factor IXa-dependent coagulation might inhibit microvascular thrombosis in stroke without impairing extrinsic hemostatic mechanisms that limit ICH. A competitive inhibitor of native Factor IXa for assembly into the intrinsic Factor X activation complex, Factor IXai, was prepared by covalent modification of the Factor IXa active site. In a modified cephalin clotting time assay, in vivo administration of Factor IXai caused a dose-dependent increase in time to clot formation (3.6-fold increase at the 300 micrograms/kg dose compared with vehicle-treated control animals, P < 0.05). Mice given Factor IXai and subjected to middle cerebral artery occlusion and reperfusion demonstrated reduced microvascular fibrin accumulation by immunoblotting and immunostaining, reduced 111In-labeled platelet deposition (42% decrease, P < 0.05), increased cerebral perfusion (2.6-fold increase in ipsilateral blood flow by laser doppler, P < 0.05), and smaller cerebral infarcts than vehicle-treated controls (70% reduction, P < 0.05) based on triphenyl tetrazolium chloride staining of serial cerebral sections. At therapeutically effective doses, Factor IXai was not associated with increased ICH, as opposed to tissue plasminogen activator (tPA) or heparin, both of which significantly increased ICH. Factor IXai was cerebroprotective even when given after the onset of stroke, indicating that microvascular thrombosis continues to evolve (and may be inhibited) even after primary occlusion of a major cerebrovascular tributary.
PMCID:2195562
PMID: 10429673
ISSN: 0022-1007
CID: 3834802

Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis

Schmidt, A M; Yan, S D; Wautier, J L; Stern, D
Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules and engages diverse ligands relevant to distinct pathological processes. One class of RAGE ligands includes glycoxidation products, termed advanced glycation end products, which occur in diabetes, at sites of oxidant stress in tissues, and in renal failure and amyloidoses. RAGE also functions as a signal transduction receptor for amyloid beta peptide, known to accumulate in Alzheimer disease in both affected brain parenchyma and cerebral vasculature. Interaction of RAGE with these ligands enhances receptor expression and initiates a positive feedback loop whereby receptor occupancy triggers increased RAGE expression, thereby perpetuating another wave of cellular activation. Sustained expression of RAGE by critical target cells, including endothelium, smooth muscle cells, mononuclear phagocytes, and neurons, in proximity to these ligands, sets the stage for chronic cellular activation and tissue damage. In a model of accelerated atherosclerosis associated with diabetes in genetically manipulated mice, blockade of cell surface RAGE by infusion of a soluble, truncated form of the receptor completely suppressed enhanced formation of vascular lesions. Amelioration of atherosclerosis in these diabetic/atherosclerotic animals by soluble RAGE occurred in the absence of changes in plasma lipids or glycemia, emphasizing the contribution of a lipid- and glycemia-independent mechanism(s) to atherogenesis, which we postulate to be interaction of RAGE with its ligands. Future studies using mice in which RAGE expression has been genetically manipulated and with selective low molecular weight RAGE inhibitors will be required to definitively assign a critical role for RAGE activation in diabetic vasculopathy. However, sustained receptor expression in a microenvironment with a plethora of ligand makes possible prolonged receptor stimulation, suggesting that interaction of cellular RAGE with its ligands could be a factor contributing to a range of important chronic disorders
PMID: 10082470
ISSN: 0009-7330
CID: 140615