Searched for: in-biosketch:yes
person:kannak03
A round robin approach to the analysis of bisphenol A (BPA) in human blood samples
Vandenberg, Laura N; Gerona, Roy R; Kannan, Kurunthachalam; Taylor, Julia A; van Breemen, Richard B; Dickenson, Carrie A; Liao, Chunyang; Yuan, Yang; Newbold, Retha R; Padmanabhan, Vasantha; Vom Saal, Frederick S; Woodruff, Tracey J
BACKGROUND:Human exposure to bisphenol A (BPA) is ubiquitous, yet there are concerns about whether BPA can be measured in human blood. This Round Robin was designed to address this concern through three goals: 1) to identify collection materials, reagents and detection apparatuses that do not contribute BPA to serum; 2) to identify sensitive and precise methods to accurately measure unconjugated BPA (uBPA) and BPA-glucuronide (BPA-G), a metabolite, in serum; and 3) to evaluate whether inadvertent hydrolysis of BPA-G occurs during sample handling and processing. METHODS:Four laboratories participated in this Round Robin. Laboratories screened materials to identify BPA contamination in collection and analysis materials. Serum was spiked with concentrations of uBPA and/or BPA-G ranging from 0.09-19.5 (uBPA) and 0.5-32 (BPA-G) ng/mL. Additional samples were preserved unspiked as 'environmental' samples. Blinded samples were provided to laboratories that used LC/MSMS to simultaneously quantify uBPA and BPA-G. To determine whether inadvertent hydrolysis of BPA metabolites occurred, samples spiked with only BPA-G were analyzed for the presence of uBPA. Finally, three laboratories compared direct and indirect methods of quantifying BPA-G. RESULTS:We identified collection materials and reagents that did not introduce BPA contamination. In the blinded spiked sample analysis, all laboratories were able to distinguish low from high values of uBPA and BPA-G, for the whole spiked sample range and for those samples spiked with the three lowest concentrations (0.5-3.1Â ng/ml). By completion of the Round Robin, three laboratories had verified methods for the analysis of uBPA and two verified for the analysis of BPA-G (verification determined by: 4 of 5 samples within 20% of spiked concentrations). In the analysis of BPA-G only spiked samples, all laboratories reported BPA-G was the majority of BPA detected (92.2 - 100%). Finally, laboratories were more likely to be verified using direct methods than indirect ones using enzymatic hydrolysis. CONCLUSIONS:Sensitive and accurate methods for the direct quantification of uBPA and BPA-G were developed in multiple laboratories and can be used for the analysis of human serum samples. BPA contamination can be controlled during sample collection and inadvertent hydrolysis of BPA conjugates can be avoided during sample handling.
PMID: 24690217
ISSN: 1476-069x
CID: 4289592
Widespread occurrence of benzophenone-type UV light filters in personal care products from China and the United States: an assessment of human exposure
Liao, Chunyang; Kannan, Kurunthachalam
Benzophenone-3 (BP-3) is a sunscreen agent used in a variety of personal care products (PCPs) for the protection of human skin and hair from damage by ultraviolet (UV) radiation. Concerns have been raised over exposure of humans to BP-3, owing to the estrogenic potential of this compound. Nevertheless, the levels and profiles of BP-3 in PCPs and sources of exposure of humans to this estrogenic compound are not well-known. In this study, concentrations of BP-3 were determined in seven categories of 231 PCPs collected from several cities in China (n = 117) and the United States (U.S.) (n = 114), using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). BP-3 was found in the majority (81%) of the samples analyzed, at concentrations as high as 0.148%. The highest BP-3 concentrations (geometric mean [GM]: 548; median: 530 ng/g) were found in skin lotions (including sunscreen lotions), followed by makeup products (284; 221 ng/g). PCPs collected from the U.S. contained higher concentrations of BP-3 than those collected from China. On the basis of the concentrations measured and daily usage rates of PCPs, we estimated the daily intake of BP-3 through dermal absorption from the use of PCPs. The GM and 95th percentile exposure doses to BP-3 were 0.978 and 25.5 μg/day, respectively, for adult women in China, which were 2 orders of magnitude lower than those found for adult women in the U.S. (24.4 and 5160 μg/day). Skin lotions and face creams contributed to the preponderance of daily BP-3 exposures (>80%).
PMID: 24588714
ISSN: 1520-5851
CID: 4289562
Occurrence of endocrine-disrupting phenols and estrogens in water and sediment of the Songhua river, northeastern China
Zhang, Zifeng; Ren, Nanqi; Kannan, Kurunthachalam; Nan, Jun; Liu, Liyan; Ma, Wanli; Qi, Hong; Li, Yifan
Concentrations of six phenolic endocrine-disrupting chemicals [4-tert-octylphenol (OP), 4-t-nonylphenol (4-t-NP), 4-n-nonylphenol (4-n-NP), nonylphenol mono- to di-ethoxylates (NP1EO, NP2EO), and bisphenol A (BPA)] and five estrogens [estrone (E1), β-estradiol (E2), estriol (E3) 17α-ethynylestradiol (EE2), and diethylstilbestrol (DES)] were determined in surface water and sediment samples collected from the Songhua River in northeast China. Concentrations of sum of five alkylphenols and alkylphenol ethoxylates (ΣOP, 4-n-NP, 4-t-NP, NP1EO, NP2EO) were 117-1,030 ng L(-1) (mean 296) in water samples and 25.5-386 ng g(-1) (mean 67.3 ng g(-1) dry weight (dw)) in sediments. Concentrations of BPA in water and sediments were 8.24-263 ng L(-1) (mean 52.0) and 1.60-17.3 ng g(-1) dw (mean 4.90 dw), respectively. Concentrations in water were 0.840-20.8 ng L(-1) (mean 5.03) for the sum of three natural steroidal estrogens (ΣE1, E2, E3) and below detection limit (BDL) at -1.38 ng L(-1) (average 0.200) for the sum of two synthetic estrogens (EE2, ΣDES). Among estrogens, only E1 was detected in all of the sediment samples in the range of 0.100-3.00 ng g(-1) dw. Concentrations of Σphenolic EDCs and Σestrogens in water and sediments and their correlations with total organic carbon indicated that these contaminants originate from similar sources, such as municipal wastewater. In situ [Formula: see text] values and sediment-water fugacity fraction were calculated for the target chemicals, and the results indicated that these chemicals were, in general, supersaturated in sediments relative to those in water.
PMID: 24468970
ISSN: 1432-0703
CID: 4289532
Thyroid hormones are associated with exposure to persistent organic pollutants in aging residents of upper Hudson River communities
Bloom, Michael S; Jansing, Robert L; Kannan, Kurunthachalam; Rej, Robert; Fitzgerald, Edward F
The aim of this study was to evaluate the association between persistent organic pollutants (POPs) and thyroid hormones in an aging population. Forty-eight women and 66 men, aged 55-74 years and living in upper Hudson River communities completed a questionnaire and provided blood specimens. Serum was analyzed for thyrotropin (thyroid stimulating hormone, TSH), free (fT4) and total thyroxine (T4), total triiodothyronine (T3), and for POPs. POPs included 39 polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) determined by gas chromatography with electron capture detection (GC-ECD), and nine polybrominated diphenyl ethers (PBDEs) determined by high-resolution gas chromatography with high-resolution mass spectrometry detection (HRGC-HRMS). Multivariable linear regression analysis was used to evaluate associations between thyroid hormones and sums of POPs, adjusted for covariates and stratified by sex. Effects were expressed as differences in thyroid hormone levels associated with a doubling in the level of exposure. Among women, DDT+DDE increased T4 by 0.34μg/dL (P=0.04) and T3 by 2.78ng/dL (P=0.05). Also in women, sums of PCBs in conjunction with PBDEs elicited increases of 24.39-80.85ng/dL T3 (P<0.05), and sums of PCBs in conjunction with DDT+DDE elicited increases of 0.18-0.31μg/dL T4 (P<0.05). For men estrogenic PCBs were associated with a 19.82ng/dL T3 decrease (P=0.003), and the sum of estrogenic PCBs in conjunction with DDT+DDE elicited an 18.02ng/dL T3 decrease (P=0.04). Given age-related declines in physiologic reserve, the influence of POPs on thyroid hormones in aging populations may have clinical implications and merits further investigation.
PMCID:3965653
PMID: 24138783
ISSN: 1618-131x
CID: 4289452
Concentrations and composition profiles of parabens in currency bills and paper products including sanitary wipes
Liao, Chunyang; Kannan, Kurunthachalam
Parabens (alkyl esters of p-hydroxybenzoic acid) are widely used as antimicrobial preservatives in personal care products, pharmaceuticals, and foodstuffs. Although parabens have been reported to be used as antimicrobials in certain types of papers (e.g., wet sanitary or hygiene wipes), little is known about the occurrence of these compounds in paper products. In this study, we determined the concentrations of six paraben analogs, methyl (MeP), ethyl (EtP), propyl (PrP), butyl (BuP), benzyl (BzP), and heptyl parabens (HepP), in 253 paper products divided into 18 categories, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). At least one of the six parabens was detected in almost all (detection rate: 98%) paper samples, and the total concentrations (∑PBs; sum of six parabens) ranged from 1.85 to 3,220,000 ng/g (geometric mean (GM): 103; median: 55.1 ng/g). Sanitary wipes contained very high concentrations of ∑PBs (GM: 8300 ng/g). Paper currencies, tickets, business cards, food cartons, flyers, and newspapers contained notable concentrations of ∑PBs, and the GM concentrations in these paper categories were on the order of a few tens to thousands of nanograms per gram. One source of parabens in paper products is the use of these chemicals as antifungal agents. MeP and PrP were the predominant analogs, accounting for approximately 62% and 16% of the total concentrations of parabens, respectively. On the basis of measured concentrations and frequency of handling of paper products, we estimated the daily intake (EDI) of parabens through dermal absorption. The GM and 95th percentile EDI values were 6.31 and 2050 ng/day, respectively, for the general population. Among the paper categories analyzed, sanitary wipes contributed to the majority (>90%) of the exposures.
PMID: 24419282
ISSN: 1879-1026
CID: 4289522
Widespread occurrence of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters (parabens), benzophenone type-UV filters, triclosan, and triclocarban in human urine from Athens, Greece
Asimakopoulos, Alexandros G; Thomaidis, Nikolaos S; Kannan, Kurunthachalam
Biomonitoring of human exposure to bisphenol A diglycidyl ethers (BADGEs; resin coating for food cans), p-hydroxybenzoic acid esters (parabens; preservatives), benzophenone-type UV filters (BP-UV filters; sunscreen agents), triclosan (TCS; antimicrobials), and triclocarban (TCC; antimicrobials) has been investigated in western European countries and North America. Nevertheless, little is known about the exposure of Greek populations to these environmental chemicals. In this study, 100 urine samples collected from Athens, Greece, were analyzed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination of total concentrations of five derivatives of BADGEs, six parabens and their metabolite (ethyl-protocatechuate), five derivatives of BP-UV filters, TCS, and TCC. Urinary concentrations of BADGEs, parabens, ethyl-protocatechuate, BP-UV filters, TCS and TCC (on a volume basis) ranged 0.3-20.9 (geometric mean: 0.9), 1.6-1010 (24.2), <2-71.0 (2.1), 0.5-1120 (4.4), <0.5-2580 (8.0) and <0.5-1.9 (0.6) ng/mL, respectively. All 19 target chemicals were found in urine, and the highest detection rates were observed for methyl paraben (100%), bisphenol A bis (2,3-dihydroxypropyl) ether (90%), ethyl paraben (87%), 2,4-dihydroxybenzophenone (78%), propyl paraben (72%), and TCS (71%). Estimated daily intakes (EDIurine), calculated on the basis of the measured urinary concentrations, ranged from 0.023 μg/kg bw/day for Σ5BADGEs to 31.4 μg/kg bw/day for Σ6Parabens.
PMID: 24246946
ISSN: 1879-1026
CID: 4289482
Bisphenol A and cardiometabolic risk factors in obese children
Khalil, Naila; Ebert, James R; Wang, Lei; Belcher, Scott; Lee, Miryoung; Czerwinski, Stefan A; Kannan, Kurunthachalam
BACKGROUND AND OBJECTIVE/OBJECTIVE:Bisphenol-A (BPA) is an endocrine disruptor (ED) that has been associated with obesity and metabolic changes in liver in humans. Non-alcoholic fatty liver disease (NAFLD) affects 40% of all obese children in the United States. Association of BPA with NAFLD in children is poorly understood. We investigated if BPA might play a role. METHODS:In a cross sectional study of 39 obese and overweight children aged 3-8 years enrolled from the Children Medical Center of Dayton, Ohio, anthropometric, clinical and biochemical assessment of serum samples were conducted. Urinary BPA was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and was adjusted for urinary creatinine BPA (creatinine) using linear regression and spline analyses. RESULTS:Higher urinary BPA (creatinine) concentration in overweight and obese children was associated with increasing free thyroxine. In male children BPA (creatinine) decreased with age, and was associated with elevated liver enzyme aspartate aminotransferase and diastolic blood pressure. The association of BPA (creatinine) persisted even after adjusting for age and ethnicity. Also in males, BPA concentration unadjusted for creatinine was significantly associated with serum fasting insulin and homeostasis model assessment for insulin resistance (HOMA-IR) showing non-monotonic exposure-response relationship. CONCLUSION/CONCLUSIONS:Urinary BPA in obese children, at least in males is associated with adverse liver and metabolic effects, and high diastolic blood pressure.
PMID: 24184549
ISSN: 1879-1026
CID: 4289472
Occurrence of PBDEs and other alternative brominated flame retardants in sludge from wastewater treatment plants in Korea
Lee, Sunggyu; Song, Geum-Ju; Kannan, Kurunthachalam; Moon, Hyo-Bang
Studies on the occurrence of polybrominated diphenyl ethers (PBDEs) and other alternative brominated flame retardants in the environment are scarce. In this study, PBDEs and non-PBDE brominated flame retardants (NBFRs), including decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), were measured in sludge collected from three types of wastewater treatment plants (WWTPs) in Korea. Total concentrations of PBDEs (∑PBDE) in sludge ranged from 298 to 48,000 (mean: 3240) ng/g dry weight. Among 10 NBFRs analyzed, DBDPE and BTBPE were the only ones detected in sludge samples. Concentrations of DBDPE and BTBPE ranged from <LOQ to 3100 (mean: 237) ng/g dry weight and from <LOQ to 21.0 (mean: 1.57) ng/g dry weight, respectively. Concentrations of PBDEs and DBDPE determined in sludge were higher than those reported in other countries. The highest concentrations of ∑PBDE and DBDPE were found in sludge samples originated from industrial-WWTPs (I-WWTPs), suggesting that industrial activities are a major source of these contaminants. Non-parametric multidimensional scaling ordination showed that congener profiles of PBDEs in sludge are dependent on the types of WWTPs. Almost all sludge samples contained a low ratio (mean: 0.18) of DBDPE/BDE 209, indicating an on-going contamination by PBDEs in Korea. However, the high ratios (>1) of DBDPE/BDE 209 were found in sludge from I-WWTPs, reflecting a shift in the usage pattern of BFRs by the Korean industry. The nationwide annual emission fluxes of ∑PBDE, DBDPE and BTBPE via WWTPs to the environment were estimated to be 7400, 480, and 3.7 kg/year, respectively. This is the first study on the occurrence of alternative brominated flame retardants in sludge from Korea.
PMID: 23993837
ISSN: 1879-1026
CID: 4289422
A multi-class bioanalytical methodology for the determination of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters, benzophenone-type ultraviolet filters, triclosan, and triclocarban in human urine by liquid chromatography-tandem mass spectrometry
Asimakopoulos, Alexandros G; Wang, Lei; Thomaidis, Nikolaos S; Kannan, Kurunthachalam
A liquid-liquid extraction (LLE; ethyl acetate) protocol, followed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methodology, was developed for the determination of 19 compounds, including bisphenol A diglycidyl ethers (BADGEs; industrial ethers), benzophenone-type UV filters (BP-UV filters; precursors and metabolites), p-hydroxybenzoic acid esters (parabens; preservatives), triclosan (TCS) and triclocarban (TCC) in human urine. Urine specimens were enzymatically deconjugated with β-glucuronidase (from Helix pomatia) and extracted by a LLE procedure for the measurement of total concentrations (i.e., free+conjugated forms) of target analytes. Absolute recoveries of BADGEs, BP-UV filters, parabens, TCS and TCC ranged 25-135%, 84-125%, 52-126%, 75-118% and 90-124%, respectively. Method precision (absolute values; N=5 replicate analyses at the fortification level of 10 ng, k=5 days) ranged from 5.8 (ethyl paraben) to 24.0% (TCS). The limits of quantification (LOQs) varied depending on the target compound and generally ranged from 0.2 to 2.0 ng/mL. The matrix effects ranged from +11 (2,3,4-trihydroxybenzophenone) to -86% (2,4-dihydroxybenzophenone). A total of 30 urine specimens collected from Athens, Greece, were analyzed for the 19 target compounds to demonstrate the applicability of the developed method. The concentrations of target chemicals in urine were presented on volume-, specific gravity (SG)-, and creatinine-normalization bases. MeP, EtP, PrP, OH-EtP, BADGE·2H2O, BP-1 and TCS were found frequently in urine at concentrations in the range of 2.7-436 ng/mL, <0.5-25.4 ng/mL, <0.5-575 ng/mL, <2-18.4 ng/mL, <0.5-13.8 ng/mL, <1-14.6 ng/mL and <0.5-95.3 ng/mL, respectively.
PMID: 24315674
ISSN: 1873-3778
CID: 4289512
Phthalates and parabens in personal care products from China: concentrations and human exposure
Guo, Ying; Wang, Lei; Kannan, Kurunthachalam
Our previous studies showed that populations in China are widely exposed to phthalates and parabens. Nevertheless, sources of Chinese exposure to phthalates and parabens are not well understood. In this study, we measured concentrations of nine phthalates and six parabens in five categories of personal care products (PCPs, N = 52) collected from Tianjin, China, and estimated human exposure doses to these compounds. The most frequently detected phthalates and parabens in PCPs were diethyl phthalate (DEP) (detection frequency 54 %), methyl paraben (MeP), and n-propyl paraben (PrP) (~75 %). The concentrations of DEP in PCPs ranged from not detected (ND; <0.1 μg/g) to 937 μg/g. The highest concentrations of MeP and PrP were 2,826 and 1,564 μg/g, respectively. Median exposure dose to parabens through dermal application of PCPs in China was estimated at 18,700 μg/d, which was two orders of magnitude greater than that calculated for phthalates (45.5 μg/d). Hand and body lotions were the major contributors to exposures, and the daily exposure doses for DEP, MeP, and PrP from these products were 38.4, 10,200 and 4,890 μg, respectively.
PMID: 23880707
ISSN: 1432-0703
CID: 4289402