Searched for: in-biosketch:yes
person:aifani01
Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche
Ma, Chao; Witkowski, Matthew T; Harris, Jacob; Dolgalev, Igor; Sreeram, Sheetal; Qian, Weiyi; Tong, Jie; Chen, Xin; Aifantis, Iannis; Chen, Weiqiang
B cell acute lymphoblastic leukemia (B-ALL) blasts hijack the bone marrow (BM) microenvironment to form chemoprotective leukemic BM "niches," facilitating chemoresistance and, ultimately, disease relapse. However, the ability to dissect these evolving, heterogeneous interactions among distinct B-ALL subtypes and their varying BM niches is limited with current in vivo methods. Here, we demonstrated an in vitro organotypic "leukemia-on-a-chip" model to emulate the in vivo B-ALL BM pathology and comparatively studied the spatial and genetic heterogeneity of the BM niche in regulating B-ALL chemotherapy resistance. We revealed the heterogeneous chemoresistance mechanisms across various B-ALL cell lines and patient-derived samples. We showed that the leukemic perivascular, endosteal, and hematopoietic niche-derived factors maintain B-ALL survival and quiescence (e.g., CXCL12 cytokine signal, VCAM-1/OPN adhesive signals, and enhanced downstream leukemia-intrinsic NF-κB pathway). Furthermore, we demonstrated the preclinical use of our model to test niche-cotargeting regimens, which may translate to patient-specific therapy screening and response prediction.
PMID: 33127669
ISSN: 2375-2548
CID: 4647202
CHD7 and Runx1 interaction provides a braking mechanism for hematopoietic differentiation
Hsu, Jingmei; Huang, Hsuan-Ting; Lee, Chung-Tsai; Choudhuri, Avik; Wilson, Nicola K; Abraham, Brian J; Moignard, Victoria; Kucinski, Iwo; Yu, Shuqian; Hyde, R Katherine; Tober, Joanna; Cai, Xiongwei; Li, Yan; Guo, Yalin; Yang, Song; Superdock, Michael; Trompouki, Eirini; Calero-Nieto, Fernando J; Ghamari, Alireza; Jiang, Jing; Gao, Peng; Gao, Long; Nguyen, Vy; Robertson, Anne L; Durand, Ellen M; Kathrein, Katie L; Aifantis, Iannis; Gerber, Scott A; Tong, Wei; Tan, Kai; Cantor, Alan B; Zhou, Yi; Liu, P Paul; Young, Richard A; Göttgens, Berthold; Speck, Nancy A; Zon, Leonard I
Hematopoietic stem and progenitor cell (HSPC) formation and lineage differentiation involve gene expression programs orchestrated by transcription factors and epigenetic regulators. Genetic disruption of the chromatin remodeler chromodomain-helicase-DNA-binding protein 7 (CHD7) expanded phenotypic HSPCs, erythroid, and myeloid lineages in zebrafish and mouse embryos. CHD7 acts to suppress hematopoietic differentiation. Binding motifs for RUNX and other hematopoietic transcription factors are enriched at sites occupied by CHD7, and decreased RUNX1 occupancy correlated with loss of CHD7 localization. CHD7 physically interacts with RUNX1 and suppresses RUNX1-induced expansion of HSPCs during development through modulation of RUNX1 activity. Consequently, the RUNX1:CHD7 axis provides proper timing and function of HSPCs as they emerge during hematopoietic development or mature in adults, representing a distinct and evolutionarily conserved control mechanism to ensure accurate hematopoietic lineage differentiation.
PMID: 32883883
ISSN: 1091-6490
CID: 4622752
U.S. Biomedical Research Needs More Immigrant Scientists, Not Fewer! [Letter]
Aifantis, Iannis; Neel, Benjamin G
PMID: 32931738
ISSN: 1878-3686
CID: 4592912
Posttranslational regulation of the exon skipping machinery controls aberrant splicing in leukemia
Zhou, Yalu; Han, Cuijuan; Wang, Eric; Lorch, Adam H; Serafin, Valentina; Cho, Byoung-Kyu; Guttierrez Diaz, Blanca T; Calvo, Julien; Fang, Celestia; Khodadadi-Jamayran, Alireza; Tabaglio, Tommaso; Marier, Christian; Kuchmiy, Anna; Sun, Limin; Yacu, George; Filip, Szymon K; Jin, Qi; Takahashi, Yoh-Hei; Amici, David R; Rendleman, Emily J; Rawat, Radhika; Bresolin, Silvia; Paganin, Maddalena; Zhang, Cheng; Li, Hu; Kandela, Irawati; Politanska, Yuliya; Abdala-Valencia, Hiam; Mendillo, Marc L; Zhu, Ping; Palhais, Bruno; Van Vlierberghe, Pieter; Taghon, Tom; Aifantis, Iannis; Goo, Young Ah; Guccione, Ernesto; Heguy, Adriana; Tsirigos, Aristotelis; Wee, Keng Boon; Mishra, Rama K; Pflumio, Francoise; Accordi, Benedetta; Basso, Giuseppe; Ntziachristos, Panagiotis
Splicing alterations are common in disease, such as cancer, where mutations in splicing factor genes are frequently responsible for aberrant splicing. Here we present an alternative mechanism for splicing regulation in T cell acute lymphoblastic leukemia (T-ALL), that involves posttranslational stabilization of the splicing machinery via deubiquitination. We demonstrate there are extensive exon skipping changes in disease affecting proteasomal subunits, cell cycle regulators, and the RNA machinery. We present that the serine/arginine-rich splicing factors (SRSF), controlling exon skipping, are critical for leukemia cell survival. The ubiquitin-specific peptidase 7 (USP7) regulates SRSF6 protein levels via active deubiquitination and USP7 inhibition alters the exon skipping pattern and blocks T-ALL growth. The splicing inhibitor H3B-8800 affects splicing of proteasomal transcripts and proteasome activity and acts synergistically with proteasome inhibitors in inhibiting T-ALL growth. Our study provides the proof-of-principle for regulation of splicing factors via deubiquitination and suggests new therapeutic modalities in T-ALL.
PMID: 32444465
ISSN: 2159-8290
CID: 4447172
RNA Splicing and Cancer
Wang, Eric; Aifantis, Iannis
RNA splicing is an essential process that governs many aspects of cellular proliferation, survival, and differentiation. Considering the importance of RNA splicing in gene regulation, alterations in this pathway have been implicated in many human cancers. Large-scale genomic studies have uncovered a spectrum of splicing machinery mutations that contribute to tumorigenesis. Moreover, cancer cells are capable of hijacking the expression of RNA-binding proteins (RBPs), leading to dysfunctional gene splicing and tumor-specific dependencies. Advances in next-generation RNA sequencing have revealed tumor-specific isoforms associated with these alterations, including the presence of neoantigens, which serve as potential immunotherapeutic targets. In this review, we discuss the various mechanisms by which cancer cells exploit RNA splicing to promote tumor growth and the current therapeutic landscape for splicing-based therapies.
PMID: 32434734
ISSN: 2405-8025
CID: 4446932
Author Correction: The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia
Papaioannou, Dimitrios; Petri, Andreas; Dovey, Oliver M; Terreri, Sara; Wang, Eric; Collins, Frances A; Woodward, Lauren A; Walker, Allison E; Nicolet, Deedra; Pepe, Felice; Kumchala, Prasanthi; Bill, Marius; Walker, Christopher J; Karunasiri, Malith; Mrózek, Krzysztof; Gardner, Miranda L; Camilotto, Virginia; Zitzer, Nina; Cooper, Jonathan L; Cai, Xiongwei; Rong-Mullins, Xiaoqing; Kohlschmidt, Jessica; Archer, Kellie J; Freitas, Michael A; Zheng, Yi; Lee, Robert J; Aifantis, Iannis; Vassiliou, George; Singh, Guramrit; Kauppinen, Sakari; Bloomfield, Clara D; Dorrance, Adrienne M; Garzon, Ramiro
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
PMID: 32728019
ISSN: 2041-1723
CID: 4581172
Rapid Crypt Cell Remodeling Regenerates the Intestinal Stem Cell Niche after Notch Inhibition
Bohin, Natacha; Keeley, Theresa M; Carulli, Alexis J; Walker, Emily M; Carlson, Elizabeth A; Gao, Jie; Aifantis, Iannis; Siebel, Christian W; Rajala, Michael W; Myers, Martin G; Jones, Jennifer C; Brindley, Constance D; Dempsey, Peter J; Samuelson, Linda C
Intestinal crypts have great capacity for repair and regeneration after intestinal stem cell (ISC) injury. Here, we define the cellular remodeling process resulting from ISC niche interruption by transient Notch pathway inhibition in adult mice. Although ISCs were retained, lineage tracing demonstrated a marked reduction in ISC function after Notch disruption. Surprisingly, Notch ligand-expressing Paneth cells were rapidly lost by apoptotic cell death. The ISC-Paneth cell changes were followed by a regenerative response, characterized by expansion of cells expressing Notch ligands Dll1 and Dll4, enhanced Notch signaling, and a proliferative surge. Lineage tracing and organoid studies showed that Dll1-expressing cells were activated to function as multipotential progenitors, generating both absorptive and secretory cells and replenishing the vacant Paneth cell pool. Our analysis uncovered a dynamic, multicellular remodeling response to acute Notch inhibition to repair the niche and restore homeostasis. Notably, this crypt regenerative response did not require ISC loss.
PMID: 32531190
ISSN: 2213-6711
CID: 4510492
Cell-by-Cell Deconstruction of Stem Cell Niches
Tikhonova, Anastasia N; Lasry, Audrey; Austin, Rebecca; Aifantis, Iannis
Single-cell sequencing approaches offer exploration of tissue architecture at unprecedented resolution. These tools are especially powerful when deconvoluting highly specialized microenvironments, such as stem cell (SC) niches. Here, we review single-cell studies that map the cellular and transcriptional makeup of stem and progenitor niches and discuss how these high-resolution analyses fundamentally advance our understanding of how niche factors shape SC biology and activity. In-depth characterization of the blueprint of SC-niche crosstalk, as well as understanding how it becomes dysregulated, will undoubtedly inform the development of more efficient therapies for malignancies and other pathologies.
PMID: 32619515
ISSN: 1875-9777
CID: 4504652
Extensive Remodeling of the Immune Microenvironment in B Cell Acute Lymphoblastic Leukemia
Witkowski, Matthew T; Dolgalev, Igor; Evensen, Nikki A; Ma, Chao; Chambers, Tiffany; Roberts, Kathryn G; Sreeram, Sheetal; Dai, Yuling; Tikhonova, Anastasia N; Lasry, Audrey; Qu, Chunxu; Pei, Deqing; Cheng, Cheng; Robbins, Gabriel A; Pierro, Joanna; Selvaraj, Shanmugapriya; Mezzano, Valeria; Daves, Marla; Lupo, Philip J; Scheurer, Michael E; Loomis, Cynthia A; Mullighan, Charles G; Chen, Weiqiang; Rabin, Karen R; Tsirigos, Aristotelis; Carroll, William L; Aifantis, Iannis
A subset of B cell acute lymphoblastic leukemia (B-ALL) patients will relapse and succumb to therapy-resistant disease. The bone marrow microenvironment may support B-ALL progression and treatment evasion. Utilizing single-cell approaches, we demonstrate B-ALL bone marrow immune microenvironment remodeling upon disease initiation and subsequent re-emergence during conventional chemotherapy. We uncover a role for non-classical monocytes in B-ALL survival, and demonstrate monocyte abundance at B-ALL diagnosis is predictive of pediatric and adult B-ALL patient survival. We show that human B-ALL blasts alter a vascularized microenvironment promoting monocytic differentiation, while depleting leukemia-associated monocytes in B-ALL animal models prolongs disease remission in vivo. Our profiling of the B-ALL immune microenvironment identifies extrinsic regulators of B-ALL survival supporting new immune-based therapeutic approaches for high-risk B-ALL treatment.
PMID: 32470390
ISSN: 1878-3686
CID: 4452012
Therapeutic targeting of the E3 ubiquitin ligase SKP2 in T-ALL
Rodriguez, Sonia; Abundis, Christina; Boccalatte, Francesco; Mehrotra, Purvi; Chiang, Mark Y; Yui, Mary A; Wang, Lin; Zhang, Huajia; Zollman, Amy; Bonfim-Silva, Ricardo; Kloetgen, Andreas; Palmer, Joycelynne; Sandusky, George; Wunderlich, Mark; Kaplan, Mark H; Mulloy, James C; Marcucci, Guido; Aifantis, Iannis; Cardoso, Angelo A; Carlesso, Nadia
Timed degradation of the cyclin-dependent kinase inhibitor p27Kip1 by the E3 ubiquitin ligase F-box protein SKP2 is critical for T-cell progression into cell cycle, coordinating proliferation and differentiation processes. SKP2 expression is regulated by mitogenic stimuli and by Notch signaling, a key pathway in T-cell development and in T-cell acute lymphoblastic leukemia (T-ALL); however, it is not known whether SKP2 plays a role in the development of T-ALL. Here, we determined that SKP2 function is relevant for T-ALL leukemogenesis, whereas is dispensable for T-cell development. Targeted inhibition of SKP2 by genetic deletion or pharmacological blockade markedly inhibited proliferation of human T-ALL cells in vitro and antagonized disease in vivo in murine and xenograft leukemia models, with little effect on normal tissues. We also demonstrate a novel feed forward feedback loop by which Notch and IL-7 signaling cooperatively converge on SKP2 induction and cell cycle activation. These studies show that the Notch/SKP2/p27Kip1 pathway plays a unique role in T-ALL development and provide a proof-of-concept for the use of SKP2 as a new therapeutic target in T-cell acute lymphoblastic leukemia (T-ALL).
PMID: 31772299
ISSN: 1476-5551
CID: 4215962