Searched for: in-biosketch:yes
person:cohenm01
Impact of coexposure to ozone on the carcinogenic potential of inhaled chromium. 1. effects on retention and on extra- and intracellular distribution
Cohen, Mitchell D; Sisco, Maureen; Baker, Kathy; Bowser, Darlene; Chen, Lung-Chi; Schlesinger, Richard B
A health hazard to welders is development of lung cancer. It is believed that this is likely due, in part, to the presence in welding fumes of several hexavalent chromium (Cr[VI]) species, whose solubility depends primarily on which process (i.e., manual metal arc verus metal-inert gas) is used. However, inhalation of Cr alone is uncommon in this setting. Thus, an examination of potential contributions from other coinhalants in creating or enhancing conditions whereby inhaled fume-associated Cr (primarily the insoluble forms) may initiate cancer is critical to increasing our understanding and preventing this particular occupational disease. One major chemical species formed and released during welding is ozone (O3). Though implications of adverse pulmonary effects from individual exposure to Cr or O3 have been investigated, those from simultaneous exposure are unclear. To begin to address whether the carcinogenic potential of insoluble Cr[VI] agents might be enhanced in hosts inhaling mixtures of Cr and O3 versus Cr alone, analyses of total lung Cr burden, Cr retention in lung epithelium and interstitium, and potential shifts in lung cell distribution of Cr from the cytoplasm to nuclei were undertaken in F-344 rats exposed nose-only (5 h/d, 5 d/wk for up to 48 wk) to an extrapolated occupationally relevant level of Cr (360 micrograms Cr/m3 as calcium chromate) alone and in combination with 0.3 ppm O3. Overall, there was only a nominal effect from O3 on Cr retention or on distribution of Cr particles among extracellular sites and within lung cells. However, there were O3-related effects upon mechanisms for clearing the Cr from the deep lung, specifically at the levels of particle uptake and postphagocytic/endocytic processing by macrophages. This O3 exposure-related shift in normal pulmonary clearance might potentially increase the health risk in workers exposed to other insoluble or poorly soluble carcinogenic Cr compounds
PMID: 12587290
ISSN: 1528-7394
CID: 34500
A role for associated transition metals in the immunotoxicity of inhaled ambient particulate matter
Zelikoff, Judith T; Schermerhorn, Kimberly R; Fang, Kaijie; Cohen, Mitchell D; Schlesinger, Richard B
Epidemiologic studies demonstrate that infection, specifically pneumonia, contributes substantially to the increased morbidity and mortality among elderly individuals following exposure to ambient particulate matter (PM). This laboratory has previously demonstrated that a single inhalation exposure of Streptococcus pneumoniae-infected rats to concentrated ambient PM(2.5) (particulate matter with aerodynamic diameter < or =2.5 microm) from New York City (NYC) air exacerbates the infection process and alters pulmonary and systemic immunity. Although these results provide some basis for explaining the epidemiologic findings, the identity of specific PM constituents that might have been responsible for the worsening pneumonia in exposed hosts remains unclear. Thus, studies were performed to correlate the physicochemical attributes of ambient PM(2.5) with its in vivo immunotoxicity to identify and characterize the role of constitutive transition metals in exacerbating an ongoing streptococcal infection. Uninfected or previously infected rats were exposed in the laboratory to soluble divalent Fe, Mn, or Ni chloride salts. After exposure, uninfected rats were sacrificed and their lungs were lavaged. Lungs from infected hosts were used to evaluate changes in bacterial clearance and effects of exposure on the extent/severity of infection. Results demonstrated that inhalation of Fe altered innate and adaptive immunity in uninfected hosts, and both Fe and Ni reduced pulmonary bacterial clearance in previously infected rats. The effects on clearance produced in infected Fe-exposed rats were similar to those seen in infected rats exposed to ambient NYC PM. Taken together, these studies demonstrate that inhaled ambient PM can worsen the outcome of an ongoing pulmonary infection and that associated Fe may play some role in the immunotoxicity
PMCID:1241264
PMID: 12426150
ISSN: 0091-6765
CID: 34502
Rapid communication: effect of inhaled chromium on pulmonary A1AT
Cohen, Mitchell D; Sisco, Maureen; Baker, Kathy; Chen, Lung-Chi; Schlesinger, Richard B
A major health hazard to coal miners is development of emphysema following long-term exposure to coal dust. One mechanism underlying development of emphysema is the oxidation of critical methionine (Met) residues in antiproteolytic factor, alpha1-antitrypsin (A1AT) resulting in a protease-antiprotease imbalance in the lung. Several studies have documented an association between the incidence and severity of emphysema among miners and their exposure to crystalline silica (i.e., SiO(2)). However, what remains unclear is the role of other co-inhaled nonemphysematogenic nonoxidant inorganic constituent in disease pathogenesis. We hypothesize that in miners, inhaled trivalent chromium (Cr(3+), the only form of Cr in coal) may potentially affect lung A1AT activity in situ via Cr complexing with Met residues, and thereby exacerbate any SiO(2)-induced imbalance. To ascertain if Cr(3+) could, in fact, affect A1AT activity, in vitro studies were done to assess elastase inhibitory activity following A1AT incubation with soluble Cr(3+). In addition, to determine if Cr(3+) found in the lungs as detoxification products of inhaled hexavalent Cr (Cr(6+)) could affect A1AT in situ, lavages from the lungs of chromate-exposed rats were also analyzed for elastase inhibitory activity The in vitro results indicate that Cr(3+) ions clearly inhibited A1AT function, with an IC50 of 1.1 mM being estimated under the experimental conditions used. The in vivo results indicate that long-term inhalation (12 wk or longer) of chromate-bearing atmospheres also gave rise to significant (i.e., 50-70%) inhibition of the antielastase activity of A1AT. Together, these results clearly suggest that the Cr(3+) present in coal dusts could potentially act to inhibit A1AT activity in the lungs of miners and thereby promote the emphysematogenicity of SiO(2) or of other emphysematogens present as coconstituents in these dusts
PMID: 12122574
ISSN: 0895-8378
CID: 34504
Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after the collapse of the WTC 11 September 2001
Lioy, Paul J; Weisel, Clifford P; Millette, James R; Eisenreich, Steven; Vallero, Daniel; Offenberg, John; Buckley, Brian; Turpin, Barbara; Zhong, Mianhua; Cohen, Mitchell D; Prophete, Colette; Yang, Ill; Stiles, Robert; Chee, Glen; Johnson, Willie; Porcja, Robert; Alimokhtari, Shahnaz; Hale, Robert C; Weschler, Charles; Chen, Lung Chi
The explosion and collapse of the World Trade Center (WTC) was a catastrophic event that produced an aerosol plume impacting many workers, residents, and commuters during the first few days after 11 September 2001. Three bulk samples of the total settled dust and smoke were collected at weather-protected locations east of the WTC on 16 and 17 September 2001; these samples are representative of the generated material that settled immediately after the explosion and fire and the concurrent collapse of the two structures. We analyzed each sample, not differentiated by particle size, for inorganic and organic composition. In the inorganic analyses, we identified metals, radionuclides, ionic species, asbestos, and inorganic species. In the organic analyses, we identified polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, pesticides, phthalate esters, brominated diphenyl ethers, and other hydrocarbons. Each sample had a basic pH. Asbestos levels ranged from 0.8% to 3.0% of the mass, the PAHs were > 0.1% of the mass, and lead ranged from 101 to 625 microg/g. The content and distribution of material was indicative of a complex mixture of building debris and combustion products in the resulting plume. These three samples were composed primarily of construction materials, soot, paint (leaded and unleaded), and glass fibers (mineral wool and fiberglass). Levels of hydrocarbons indicated unburned or partially burned jet fuel, plastic, cellulose, and other materials that were ignited by the fire. In morphologic analyses we found that a majority of the mass was fibrous and composed of many types of fibers (e.g., mineral wool, fiberglass, asbestos, wood, paper, and cotton). The particles were separated into size classifications by gravimetric and aerodynamic methods. Material < 2.5 microm in aerodynamic diameter was 0.88-1.98% of the total mass. The largest mass concentrations were > 53 microm in diameter. The results obtained from these samples can be used to understand the contact and types of exposures to this unprecedented complex mixture experienced by the surviving residents, commuters, and rescue workers directly affected by the plume from 11 to 12 September and the evaluations of any acute or long-term health effects from resuspendable dust and smoke to the residents, commuters, and local workers, as well as from the materials released after 11 September until the fires were extinguished. Further, these results support the need to have the interior of residences, buildings, and their respective HVAC systems professionally cleaned to reduce long-term residential risks before rehabitation
PMCID:1240917
PMID: 12117648
ISSN: 0091-6765
CID: 42719
The toxicology of inhaled woodsmoke
Zelikoff, Judith T; Chen, Lung Chi; Cohen, Mitchell D; Schlesinger, Richard B
In addition to developing nations relying almost exclusively upon biomass fuels, such as wood for cooking and home heating, North Americans, particularly in Canada and the northwestern and northeastern sections of the United States, have increasingly turned to woodburning as an alternate method for domestic heating because of increasing energy costs. As a result, the number of households using woodburning devices has increased dramatically. This has resulted in an increase in public exposure to indoor and outdoor woodsmoke-associated pollutants, which has prompted widespread concern about the adverse human health consequences that may be associated with prolonged woodsmoke exposure. This mini-review article brings together many of the human and animal studies performed over the last three decades in an attempt to better define the toxicological impact of inhaled woodsmoke on exposed children and adults; particular attention is given to effects upon the immune system. General information regarding occurrence and woodsmoke chemistry is provided so as to set the stage for a better understanding of the toxicological impact. It can be concluded from this review that exposure to woodsmoke, particularly for children, represents a potential health hazard. However, despite its widespread occurrence and apparent human health risks, relatively few studies have focused upon this particular area of research. More laboratory studies aimed at understanding the effects and underlying mechanisms of woodsmoke exposure, particularly on those individuals deemed to be at greatest risk, are badly needed, so that precise human health risks can be defined, appropriate regulatory standards can be set, and accurate decisions can be made concerning the use of current and new woodburning devices
PMID: 12162869
ISSN: 1093-7404
CID: 34503
Ozone-induced modulation of airway hyperresponsiveness in guinea pigs
Schlesinger, Richard B; Cohen, Mitchell; Gordon, Terry; Nadziejko, Christine; Zelikoff, Judith T; Sisco, Maureen; Regal, Jean F; Menache, Margaret G
Although acute exposure to ozone (03*) has been shown to influence the severity and prevalence of airway hyperresponsiveness, information has been lacking on effects due to long-term exposure at relatively low exposure concentrations. The goals of this study were to determine whether long-term repeated ozone exposures could induce nonspecific hyperresponsiveness in normal, nonatopic (nonsensitized) animals, whether such exposure could exacerbate the preexisting hyperresponsive state in atopic (sensitized) animals, or both. The study was also designed to determine whether gender modulated airway responsiveness related to ozone exposure. Airway responsiveness was measured during and after exposure to 0.1 and 0.3 ppm ozone for 4 hours/day, 4 days/week for 24 weeks in normal, nonsensitized guinea pigs, in guinea pigs sensitized to an allergen (ovalbumin) prior to initiation of ozone exposures, and in animals sensitized concurrently with ozone exposures. Both male and female animals were studied. Ozone exposure did not produce airway hyperresponsiveness in nonsensitized animals. Ozone exposure did exacerbate airway hyperresponsiveness to specific and nonspecific bronchoprovocation in both groups of sensitized animals, and this effect persisted at least 4 weeks after the end of the exposures. Although the overall degree of airway responsiveness did differ between genders (males had more responsive airways than did females), the airway response to ozone exposure did not differ between the two groups. Ozone-induced effects upon airway responsiveness were not associated with the number of pulmonary eosinophils or with any chronic pulmonary inflammatory response. Levels of antigen-specific antibodies increased in sensitized animals, and a significant correlation was observed between airway responsiveness and antibody levels. The results of this study provide support for a role of ambient ozone exposure in exacerbation of airway dysfunction in persons with atopy
PMID: 12322853
ISSN: 1041-5505
CID: 34490
Effects of inhaled ozone on pulmonary immune cells critical to antibacterial responses in situ
Cohen, Mitchell D; Sisco, Maureen; Baker, Kathy; Li, Yun; Lawrence, David; van Loveren, Henk; Zelikoff, Judith T; Schlesinger, Richard B
The goal of this study was to examine effects from repeated exposure to ozone (O3) on immune cells involved in cell-mediated antibacterial responses in the lungs. Rats exposed to 0.1 or 0.3 ppm O3 for 4 h/day, 5 days/wk, for 1 or 3 wk were analyzed for the ability to clear an intrapulmonary challenge with Listeria monocytogenes or had their lungs processed to obtain pulmonary alveolar macrophages (PAM) and lung-associated lymphocytes for analyses of select cell functions and surface marker expression. The results indicate that repeated inhalation exposure to O3 affected local cell-mediated immunity (CMI) responses as evidenced by effects on clearance of Listeria. However, this modulation was not consistently dependent on exposure concentration or duration. Short-term repeat exposures had more effect on host resistance than did the more prolonged regimen, with rats exposed to 0.1 ppm O3 most adversely impacted. Clearance patterns suggest modifications in innate resistance following 1 wk of exposure to 0.1 ppm O3, but no similar effect following a 3-wk regimen. Exposure to 0.3 ppm O3 appeared to affect both innate and acquired resistance after a 1-wk regimen, but mainly the former after an additional 2 wk of exposure. We conclude that these two mechanisms of resistance are differentially affected by O3 and that distinct time- and O3 concentration-dependent adaptation phenomena evolve for each; that is, in situ adaptation to higher levels of O3 may occur more readily with acquired than with innate/PAM-dependent resistance. A similar pattern of inconsistent effect on PAM and lung-associated lymphocytes was also evident. For example, while 3-wk exposures had a greater effect on PAM reactive oxygen intermediate ROI production, evidence for a significant effect on antibacterial activity was only notable among PAM from rats exposed for 1 wk. Among lung lymphocytes, while 3-wk exposure to 0.1 ppm O3 led to a significant increase in CD25 expression, there was no corresponding increase in responsivity to concanavalin A (ConA); only among cells from 1-wk-exposed rats did lymphoproliferative responses increase. Though investigations of altered immune cell cytokine receptor expression/binding activity are ongoing, results herein provide further evidence to support our longstanding hypothesis that some well-documented effects of O3 exposure on human health are quite likely linked to changes in local immune cell (i.e., PAM and lung-associated lymphocytes) functions, with the latter being related to changes in the capacities of these cells to interact with immunoregulatory cytokines
PMID: 12119071
ISSN: 0895-8378
CID: 32458
Ozone differentially modulates airway responsiveness in atopic versus nonatopic guinea pigs
Schlesinger, Richard B; Cohen, Mitchell D; Gordon, Terry; Nadziejko, Christine; Zelikoff, Judith T; Sisco, Maureen; Regal, Jean F; Menache, Margaret G
While acute exposures to ozone (O(3)) can alter airway responsiveness, effects from long-term exposures at low concentrations are less clear. This study assessed whether such exposures could induce nonspecific hyperresponsiveness in nonatopic (nonsensitized) guinea pigs and/or could exacerbate the pre-existing hyperresponsive state in atopic (sensitized) animals, and whether gender was a factor modulating any effect of O(3). Responsiveness was measured during and following exposures to 0.1 and 0.3 ppm O(3) for 4 h/day, 4 days/wk for 24 wk in male and female nonsensitized animals, those sensitized to allergen (ovalbumin) prior to initiation of O(3) exposures, and those sensitized concurrently with exposures. Ozone did not produce hyperresponsiveness in nonsensitized animals, but did exacerbate hyperresponsiveness to both specific and nonspecific bronchoprovocation challenges in sensitized animals, an effect that persisted through at least 4 wk after exposures ended. Gender was not a factor modulating response to O(3). Induced effects on responsiveness were not associated with numbers of eosinophils in the lungs nor with any chronic pulmonary inflammatory response, but were correlated with antigen-specific antibodies in blood. This study supports a role for chronic O(3) exposure in the exacerbation of airways dysfunction in a certain segment of the general population, namely, those demonstrating atopy
PMCID:2978653
PMID: 12028802
ISSN: 0895-8378
CID: 34505
Backing into cancer: effects of arsenic on cell differentiation [Comment]
Salnikow, Konstantin; Cohen, Mitchell D
PMID: 11812918
ISSN: 1096-6080
CID: 34651
Ozone-induced modulation of cell-mediated immune responses in the lungs
Cohen MD; Sisco M; Li Y; Zelikoff JT; Schlesinger RB
Most pulmonary immunotoxicology studies of ambient pollutants have been broadly designed to discern if overall humoral or cell-mediated immunity (CMI) was altered; few have assessed effects on particular aspects of immune function. We hypothesized that effects from ozone (O3) exposure on pulmonary CMI are linked in part to changes in local immune cell capacities to form and/or to interact with immunoregulatory cytokines. Rats exposed to 0.1 or 0.3 ppm O3 4 h/day 5 days/week, for 1 or 3 weeks were assessed for resistance to, and pulmonary clearance of, a subsequent Listeria monocytogenes challenge. In situ cytokine release and immune cell profiles were also analyzed at different stages of the antilisterial response. Although O3 exposure modulated CMI, effects were not consistently concentration- or duration-dependent. Exposure did not effect cumulative mortality from infection, but induced concentration-related effects upon morbidity onset and persistence. All 1-week exposed rats had listeric burdens trending higher than controls; 0.3 ppm rats displayed continual burden increases rather than any onset of resolution. Rats exposed for 3 weeks had no O3-related changes in clearance. No exposure-related effect on neutrophil or pulmonary macrophage (PAM) numbers or percentages was noted. Bacterial burden analyses with respect to cell type showed that Listeria:PAM ratios in 0.3 ppm rats ultimately became greatest compared to all other rats. In situ IL-1alpha and TNFalpha levels were consistently higher in O3-exposed rats. All rats displayed increasing in situ IFNgamma levels as infection progressed, but no constant relationship was evident between IFNgamma and initial IL-1alpha/TNFalpha levels in O3-exposed hosts. It seems that short-term (i.e., 1 week) repeated O3 exposures imparted more effects upon CMI than a more prolonged (i.e., 3 week) regimen, with effects manifesting at the level of the PAM and in the cytokine network responsible for immunoactivation
PMID: 11222083
ISSN: 0041-008x
CID: 26782