Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:goldl01

Total Results:

131


Expression of transforming growth factor-beta (TGF-beta) isoforms in osteosarcomas: TGF-beta3 is related to disease progression

Kloen, P; Gebhardt, M C; Perez-Atayde, A; Rosenberg, A E; Springfield, D S; Gold, L I; Mankin, H J
BACKGROUND: Transforming growth factor-beta (TGF-beta) is a multipotent growth factor affecting development, homeostasis, and tissue repair. In addition, increased expression of TGF-beta has been reported in different malignancies, suggesting a role for this growth factor in tumorigenesis. METHODS: Using immunohistochemistry, the expression, prevalence, and distribution of TGF-beta isoforms were evaluated in 25 high grade human osteosarcomas. The Cox proportional hazards models and Kaplan-Meier curves were calculated correlating disease free survival with TGF-beta expression. RESULTS: Expression of one or more TGF-beta isoforms was found in all the osteosarcomas. Immunoreactivity for TGF-beta1 and TGF-beta3 generally was stronger than for TGF-beta2. The cytoplasm of the tumor cells showed stronger staining than their surrounding extracellular stroma. Most notably, osteoclasts showed strong to intense staining for all three isoforms. In 11 of 25 specimens angiogenic activity was noted with staining of multiple small vessels in the tumor stroma. Expression of TGF-beta3, but not of TGF-beta2 or TGF-beta1, related to disease progression, such that there was a statistically significant decrease in the disease free interval as the immunoreactivity for TGF-beta3 increased. CONCLUSIONS: All osteosarcomas expressed TGF-beta in the cytoplasm of the tumor cells as well as in their extracellular stroma. The presence of TGF-beta in the endothelial and perivascular layers of small vessels in the tumor stroma suggests angiogenic activity of this growth factor. The expression of TGF-beta3 was correlated strongly with disease progression (P = 0.027). These data suggest that increased expression of TGF-beta isoforms, especially TGF-beta3, may play a role in osteosarcoma progression
PMID: 9404699
ISSN: 0008-543x
CID: 76293

Immunohistochemical localization of transforming growth factor beta isoforms in asbestos-related diseases

Jagirdar J; Lee TC; Reibman J; Gold LI; Aston C; Begin R; Rom WN
Transforming growth factor beta (TGF-beta), a multifunctional cytokine and growth factor, plays a key role in scarring and fibrotic processes because of its ability to induce extracellular matrix proteins and modulate the growth and immune function of many cell types. These effects are important in inflammatory disorders with fibrosis and cancer. The asbestos-related diseases are characterized by fibrosis in the lower respiratory tract and pleura and increased occurrence of lung cancer and mesothelioma. We performed immunohistochemistry with isoform-specific antibodies to the three TGF-beta isoforms on 16 autopsy lungs from Quebec, Canada, asbestos miners and millers. There was increased immunolocalization of all three TGF-beta isoforms in the fibrotic lesions of asbestosis and pleural fibrosis. The hyperplastic type II pneumocytes contained all three isoforms. By contrast, there was differential spatial immunostaining for the TGF-beta isoforms in malignant mesothelioma, with TGF-beta 1 in the stroma but TGF-beta 2 in the tumor cells. These data are consistent with an important role for TGF-beta in accumulation of extracellular matrix and cell proliferation in asbestos-related diseases
PMCID:1470128
PMID: 9400723
ISSN: 0091-6765
CID: 12204

Exogenous and endogenous transforming growth factors-beta influence elastin gene expression in cultured lung fibroblasts

McGowan, S E; Jackson, S K; Olson, P J; Parekh, T; Gold, L I
Elastin, an important structural protein of the extracellular matrix, confers elastic properties on the pulmonary alveolar interstitium. In the alveolar wall, elastin is primarily produced postnatally by fibroblasts. The mechanisms that regulate lung fibroblast (LF) elastin gene expression have not been completely defined, although both transcriptional and posttranscriptional mechanisms appear to be involved. Transforming growth factors-beta (TGF-beta s) have been shown to increase elastin production by cultured neonatal rat LF. Analyses of elastin gene transcription and mRNA stability indicate that exogenous TGF-beta 1 increases the half-life of tropoelastin mRNA by 1.5-fold and does not alter elastin gene transcription. Interference with the functions of endogenous TGF-beta 1 in cultured LF, through the addition of neutralizing antibodies or antisense oligodeoxynucleotides, decreases tropoelastin and tropoelastin mRNA production by these cells. The content of total (latent plus active) TGF-beta s was approximately 4.5-fold greater in lungs obtained from rats on postnatal day 8 than in lungs obtained from adults. These findings indicate that endogenous TGF-beta s, in cultured LF, regulate elastin gene expression, most likely by a posttranscriptional mechanism. Since others have shown that elastin mRNA appears to have a longer half-life in neonatal than in adult rat lungs, we hypothesize that the higher content of TGF-beta s could contribute to the greater elastin mRNA stability in neonatal lungs
PMID: 9224206
ISSN: 1044-1549
CID: 76294

Differential localization of transforming growth factor-beta isoforms in human gastric mucosa and overexpression in gastric carcinoma

Naef, M; Ishiwata, T; Friess, H; Buchler, M W; Gold, L I; Korc, M
Transforming growth factor beta (TGF-beta) isoforms comprise a family of multifunctional polypeptide growth factors that either inhibit or stimulate cell proliferation. We examined TGF-beta expression in normal human gastric mucosa and carcinoma. The distribution and expression of TGF-beta isoforms in 4 normal mucosa samples from organ donors, in 12 normal mucosa samples adjacent to gastric cancer and in 12 gastric carcinomas were examined using immunohistochemistry and Northern blot analysis. Because TGF-beta s regulate collagen expression, collagen type I alpha1 mRNA amounts were also examined. Immunohistochemical analysis of normal human gastric tissue samples indicated that TGF-beta1 localized principally in parietal cells but also in some surface mucus cells, TGF-beta2 was present exclusively in chief cells and TGF-beta3 was present in parietal, chief and mucus cells. In the gastric cancers, strong colocalization of TGF-beta1, -beta2 and -beta3 was evident in the cancer cells. Northern blot analysis indicated that, compared to normal gastric tissue, gastric cancers showed a 4.8- and 6-fold increase in mRNA amounts encoding TGF-beta1 and TGF-beta3, respectively. In contrast, TGF-beta2 mRNA amounts were comparable in both groups. Northern blot analysis showed a 10-fold increase in human collagen type I alpha1 mRNA amounts compared to normal gastric tissue. These findings imply a role forTGF-beta s in normal human gastric mucosa function, and raise the possibility that the aberrant colocalization and overexpression of all 3 TGF-beta isoforms in human gastric cancer cells in vivo may contribute to the pathobiology of gastric carcinoma
PMID: 9139831
ISSN: 0020-7136
CID: 76295

Studies in cranial suture biology: Part I. Increased immunoreactivity for TGF-beta isoforms (beta 1, beta 2, and beta 3) during rat cranial suture fusion [see comments] [Comment]

Roth DA; Longaker MT; McCarthy JG; Rosen DM; McMullen HF; Levine JP; Sung J; Gold LI
The mechanisms involved in normal cranial suture development and fusion as well as the pathophysiology of craniosynostosis, a premature fusion of the cranial sutures, are not well understood. Transforming growth factor-beta isoforms (TGF-beta 1, beta 2, and beta 3) are abundant in bone and stimulate calvarial bone formation when injected locally in vivo. To gain insight into the role of these factors in normal growth and development of cranial sutures and the possible etiology of premature cranial suture fusion, we examined the temporal and spatial expression of TGF-beta isoforms during normal cranial suture development in the rat. In the Sprague-Dawley rat, only the posterior frontal cranial suture undergoes fusion between 12 and 22 days of age, while all other cranial sutures remain patent. Therefore, immunohistochemical analysis of the fusing posterior frontal suture was compared with the patent sagittal suture at multiple time points from the fetus through adult. Whereas the intensity of immunostaining was the same in the posterior frontal and sagittal sutures in the fetal rat, there was increased immunoreactivity for TGF-beta isoforms in the actively fusing posterior frontal suture compared with the patent sagittal suture starting 2 days after birth and continuing until approximately 20 days. There were intensely immunoreactive osteoblasts present during fusion of the posterior frontal suture. In contrast, the patent sagittal suture was only slightly immunoreactive. A differential immunostaining pattern was observed among the TGF-beta isoforms; TGF-beta 2 was the most immunoreactive isoform and was also most strongly associated with osteoblasts adjacent to the dura and the margin of the fusing suture. Since the increased expression of TGF-beta 2 during suture fusion suggested a possible regulatory role, recombinant TGF-beta 2 was added directly to the posterior frontal and sagittal sutures in vivo to determine if suture fusion could be initiated. Exogenously added TGF-beta 2 stimulated fusion of the ectocranial surface of the posterior frontal suture. These data provide evidence for a regulatory role for these growth factors in cranial suture development and fusion. Additionally, the intense immunostaining for TGF-beta 2 in the dura mater underlying the fusing suture supports a role for the dura mater in suture fusion. It is possible that premature or excessive expression of these factors may be involved in the etiopathogenesis of craniosynostosis and that modulation of the growth factor profile at the suture site may have potential therapeutic value
PMID: 9076573
ISSN: 0884-0431
CID: 12370

Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair

Gold LI; Sung JJ; Siebert JW; Longaker MT
Transforming growth factor (TGF)-beta isoforms (TGF-beta 1, -beta 2, and -beta 3) regulate cell growth and differentiation and have critical regulatory roles in the process of tissue repair and remodeling. Signal transduction for TGF-beta function is transmitted by a heteromeric complex of receptors consisting of two serine/threonine kinase transmembrane proteins (RI and RII). We have previously shown that each TGF-beta isoform is widely expressed in a distinct spatial and temporal pattern throughout the processes of excisional and incisional wound repair. As the presence of TGF-beta receptors determines cellular responsiveness, we have currently examined, by immunohistochemistry, the localization of RI (ALK-1, ALK-5) and RII throughout repair of full-thickness excisional wounds up to 21 days after wounding. The expression of RI (ALK-5) and RII co-localized in both the unwounded and wounded skin and was present in the same cell types as TGF-beta ligands. However, immunoreactivity for TGF-beta receptors, throughout repair, occurred 1 to 5 days later than TGF-beta isoform immunostaining. This implies that the presence of TGF-beta ligands may up-regulate TGF-beta receptors for function and/or may reflect a lag due to local processing of latent TGF-beta. As observed for the immunohistochemical localization of TGF-beta isoforms in unwounded skin, RI and RII were expressed throughout the four layers of the epidermis, showing a wavy pattern of slight to moderate immunostaining, and hair follicles, sweat glands, and sebaceous glands were moderately immunoreactive. The extracellular matrix, fibroblasts, and blood vessels in the dermis were not immunoreactive. After injury, as observed for TGF-beta ligands, RI and RII expression was increased in the epidermis adjacent to the wound and the epithelium migrating over the wound was completely devoid of TGF-beta receptor immunoreactivity until re-epithelialization was completed by day 7 after wounding. The dermis was only slightly immunoreactive for RI and RII until day 5 when, immediately under the wound, immunostaining for fibroblasts, connective tissue cells, and newly forming vasculature began to increase and remained intense until day 14. Consistent with the role for TGF-beta in scarring, numerous fibroblasts, ostensibly active in the production of extracellular matrix components, continued to be slightly immunoreactive for RI and RII at 21 days. The ALK-1 (TSR-1) type I receptor, which binds both activin and TGF-beta, showed slight immunostaining early in repair (days 1 to 7) that progressively became more intense later in repair after day 10 and through day 21. This suggests that there may be a switch to a different type I receptor, implying different functions for the ALK-1 and ALK-5 receptors. The concomitant expression of TGF-beta isoforms and their signal-transducing receptors denote potential spatial and temporal activity of TGF-beta. Thus, although TGF-beta ligand is present, TGF-beta would not function in wound repair until a later time when RI and RII appear. This information should aid in the development of receptor antagonists as a therapeutic approach to scarring and fibrosis. In addition, these studies underscore the importance of defining the expression of proteins in vivo to establish a basis for the analysis of mechanisms in vitro
PMCID:1858519
PMID: 9006337
ISSN: 0002-9440
CID: 12427

Increased expression of transforming growth factor beta s after acute oedematous pancreatitis in rats suggests a role in pancreatic repair

Riesle, E; Friess, H; Zhao, L; Wagner, M; Uhl, W; Baczako, K; Gold, L I; Korc, M; Buchler, M W
BACKGROUND: Transforming growth factor beta isoforms (TGF beta s) belong to a family of multifunctional regulators of cellular growth and differentiation. They are mitogenic and chemotactic for fibroblasts and are potent stimulators of extracellular matrix production (collagen) and deposition. Upregulation of TGF beta transcription has been reported for several in vivo systems during repair after injury. AIMS: To study the expression of the three mammalian isoforms of TGF beta (TGF beta 1-3) and their relation to collagen expression as a marker for fibroblast response in acute oedematous pancreatitis in rats. METHODS: Using northern blot analysis and immunohistochemistry, the expression and localisation of TGF beta isoforms, collagen, and amylase were analysed during the course of acute oedematous pancreatitis in rats, experimentally induced by intravenous caerulein infusion. RESULTS: Induction of acute pancreatitis resulted in a biphasic peak pattern of expression of TGF beta 1, beta 2, and beta 3 mRNA, with a pronounced increase from day 1 to day 3 (sixfold, 2.5-fold, fivefold, respectively) and again from day 5 to day 7 (three-fold, 2.3-fold, 3.5-fold, respectively). The temporal changes in TGF beta mRNA identically paralleled the expression in collagen mRNA. In contrast, amylase mRNA expression, used as a general indicator of acinar cell integrity, was slightly decreased after induction of acute pancreatitis. Immunohistochemical analysis of pancreatitis tissue showed that increased expression of TGF beta s was mainly present in the pancreatic acinar and ductal cells; this was evident within one day after pancreatitis induction. CONCLUSION: Overexpression of TGF beta s after induction of acute pancreatitis suggests a role for these proteins in pancreatic repair and remodelling. The increased levels of TGF beta s may help suppress immune activation, and may contribute to the increase in the extracellular matrix including collagen and to the repair of the pancreatic parenchyma
PMCID:1027011
PMID: 9155579
ISSN: 0017-5749
CID: 76296

Immunohistochemical localization of transforming growth factor-beta and insulin-like growth factor-I in asbestosis in the sheep model

Lee TC; Gold LI; Reibman J; Aston C; Begin R; Rom WN; Jagirdar J
Asbestosis is characterized by increased collagen deposition along the walls of terminal respiratory bronchioles that extends into the alveolar ducts and septae. Alveolar macrophages are activated and release growth factors that stimulate mesenchymal cell proliferation and enhanced formation of extracellular matrix. Both insulin-like growth factor-I (IGF-I), and transforming growth factor beta (TGF-beta) regulate cellular growth and promote matrix accumulation and are hypothesized to play important roles in asbestosis. We performed immunohistochemistry using polyclonal antibodies to specific synthetic peptides of the three mammalian isoforms of TGF-beta (TGF-beta 1, -beta 2, -beta 3) and to IGF-I on lungs of sheep treated intratracheally with chrysotile asbestos. All three TGF-beta isoforms were found in bronchial and bronchiolar epithelium, macrophages, and bronchial and vascular smooth muscle in control lungs. The distribution of TGF-beta was increased in these lung constituents as fibrotic lesions developed. Fibrotic lesions additionally demonstrated intense immunostaining of all three TGF-beta isoforms that localized to the extracellular matrix zones with little staining of interstitial cells. In the control sheep lungs, IGF-I staining was detected in bronchial and bronchiolar epithelium, bronchial glands, bronchial and vascular smooth muscle, endothelium, and macrophages. IGF-I immunostaining was detected in macrophages in peribronchial fibrosis and in fibroblasts along the periphery of and within lesions, but not in the extracellular matrix. Metaplastic proliferating epithelium and macrophages were strongly immunoreactive for IGF-I in advanced lesions. Our data demonstrate different immunostaining patterns for IGF-I and TGF-beta in asbestosis, with IGF-I in the cellular periphery and TGF-beta in the extracellular matrix consistent with a complementary role in stimulating interstitial fibroblast proliferation and new collagen deposition in areas of active fibrosis
PMID: 9049666
ISSN: 0340-0131
CID: 12416

Intracellular demonstration of active TGFbeta1 in B cells and plasma cells of autoimmune mice. IgG-bound TGFbeta1 suppresses neutrophil function and host defense against Staphylococcus aureus infection

Caver, T E; O'Sullivan, F X; Gold, L I; Gresham, H D
Infection remains a leading cause of morbidity and mortality in patients with SLE. To investigate this, previously we assessed the host defense status of autoimmune MRL/lpr mice and found that elaboration of active TGFbeta suppressed neutrophil function and decreased survival in response to Staphylococcus aureus infection. The purpose of the present work was to elucidate the molecular form and the cellular source of the active TGFbeta involved. Here, we report for the first time that TGFbeta1 is found in the active form inside B cells and plasma cells and that it circulates in the plasma complexed with IgG in two murine models of systemic autoimmunity and in some patients with SLE. IgG-bound active TGFbeta1 is many times more potent than uncomplexed active TGFbeta1 for suppression of neutrophil function in vitro and host defense against S. aureus infection in vivo. These data indicate that TGFbeta1 is in the active form inside B cells and plasma cells, that the formation of a complex of IgG and active TGFbeta1 is greatly accelerated in autoimmunity, and that this complex is extremely potent for suppression of PMN function and host defense against bacterial infection
PMCID:507707
PMID: 8958212
ISSN: 0021-9738
CID: 76297

Inward growth of colonic adenomatous polyps

Moss, S F; Liu, T C; Petrotos, A; Hsu, T M; Gold, L I; Holt, P R
BACKGROUND & AIMS: Most colon cancers arise from polypoid adenomas, but how these benign lesions develop into malignant neoplasms is not understood. This study examined the migration of epithelial cells within human adenomatous polyps by determining the distribution of proliferating and apoptotic cells and immunoreactivity to transforming growth factor beta (TGF-beta). METHODS: Sections of surgically resected normal (n = 10) and adenomatous (n = 22) formalin-fixed tissue were examined for proliferating cells and TGF-beta isoenzymes 1-3 by immunohistochemistry and apoptotic cells by terminal deoxyuridine nick end-labeling. RESULTS: The distribution of proliferating, apoptotic, and TGF-beta immunoreactive cells was strikingly reversed in adenomatous polyps compared with normal mucosa. Proliferating cells were located in the base of normal colonic crypts and TGF-beta immunoreactive and apoptotic cells near or at the luminal surface, corresponding to the normal migration of colonocytes. In adenomas, increased numbers of proliferating cells were mainly located at the luminal surface and TGF-beta immunoreactive and apoptotic cells were located principally at the crypt base. CONCLUSIONS: This distribution suggests that cell migration in adenomas is not toward the lumen but instead inward toward the polyp base
PMID: 8942720
ISSN: 0016-5085
CID: 76298