Searched for: in-biosketch:yes
person:halasm01
Synaptic islands defined by the territory of a single astrocyte
Halassa, Michael M; Fellin, Tommaso; Takano, Hajime; Dong, Jing-Hui; Haydon, Philip G
In the mammalian brain, astrocytes modulate neuronal function, in part, by synchronizing neuronal firing and coordinating synaptic networks. Little, however, is known about how this is accomplished from a structural standpoint. To investigate the structural basis of astrocyte-mediated neuronal synchrony and synaptic coordination, the three-dimensional relationships between cortical astrocytes and neurons was investigated. Using a transgenic and viral approach to label astrocytes with enhanced green fluorescent protein, we performed a three-dimensional reconstruction of astrocytes from tissue sections or live animals in vivo. We found that cortical astrocytes occupy nonoverlapping territories similar to those described in the hippocampus. Using immunofluorescence labeling of neuronal somata, a single astrocyte enwraps on average four neuronal somata with an upper limit of eight. Single-neuron dye-fills allowed us to estimate that one astrocyte contacts 300-600 neuronal dendrites. Together with the recent findings showing that glial Ca2+ signaling is restricted to individual astrocytes in vivo, and that Ca2+ signaling leads to gliotransmission, we propose the concept of functional islands of synapses in which groups of synapses confined within the boundaries of an individual astrocyte are modulated by the gliotransmitter environment controlled by that astrocyte. Our description offers a new structurally based conceptual framework to evaluate functional data involving interactions between neurons and astrocytes in the mammalian brain.
PMID: 17567808
ISSN: 0270-6474
CID: 587042
The tripartite synapse: roles for gliotransmission in health and disease
Halassa, Michael M; Fellin, Tommaso; Haydon, Philip G
In addition to being essential supporters of neuronal function, astrocytes are now recognized as active elements in the brain. Astrocytes sense and integrate synaptic activity and, depending on intracellular Ca(2+) levels, release gliotransmitters (e.g. glutamate, d-serine and ATP) that have feedback actions on neurons. Recent experimental results have raised the possibility that quantitative variations in gliotransmission might contribute to disorders of the nervous system. Here, we discuss targeted molecular genetic approaches that have demonstrated that alterations in protein expression in astrocytes can lead to serious changes in neuronal function. We also introduce the concept of 'astrocyte activation spectrum' in which enhanced and reduced gliotransmission might contribute to epilepsy and schizophrenia, respectively. The results of future experimental tests of the astrocyte activation spectrum, which relates gliotransmission to neurological and psychiatric disorders, might point to a new therapeutic target in the brain.
PMID: 17207662
ISSN: 1471-4914
CID: 587052
Fusion-related release of glutamate from astrocytes
Zhang, Qi; Pangrsic, Tina; Kreft, Marko; Krzan, Mojca; Li, Nianzhen; Sul, Jai-Yoon; Halassa, Michael; Van Bockstaele, Elisabeth; Zorec, Robert; Haydon, Philip G
Although cell culture studies have implicated the presence of vesicle proteins in mediating the release of glutamate from astrocytes, definitive proof requires the identification of the glutamate release mechanism and the localization of this mechanism in astrocytes at synaptic locales. In cultured murine astrocytes we show an array of vesicle proteins, including SNARE proteins, and vesicular glutamate transporters that are required to fill vesicles with glutamate. Using immunocytochemistry and single-cell multiplex reverse transcription-PCR we demonstrate the presence of these proteins and their transcripts within astrocytes freshly isolated from the hippocampus. Moreover, immunoelectron microscopy demonstrates the presence of VGLUT1 in processes of astrocytes of the hippocampus. To determine whether calcium-dependent glutamate release is mediated by exocytosis, we expressed the SNARE motif of synaptobrevin II to prevent the formation of SNARE complexes, which reduces glutamate release from astrocytes. To further determine whether vesicular exocytosis mediates calcium-dependent glutamate release from astrocytes, we performed whole cell capacitance measurements from individual astrocytes and demonstrate an increase in whole cell capacitance, coincident with glutamate release. Together, these data allow us to conclude that astrocytes in situ express vesicle proteins necessary for filling vesicles with the chemical transmitter glutamate and that astrocytes release glutamate through a vesicle- or fusion-related mechanism.
PMID: 14722063
ISSN: 0021-9258
CID: 587062