Searched for: in-biosketch:yes
person:heguya01
Somatic Focal Copy Number Gains of Noncoding Regions of Receptor Tyrosine Kinase Genes in Treatment-Resistant Epilepsy
Vasudevaraja, Varshini; Rodriguez, Javier Hernaez; Pelorosso, Cristiana; Zhu, Kaicen; Buccoliero, Anna Maria; Onozato, Maristela; Mohamed, Hussein; Serrano, Jonathan; Tredwin, Lily; Garonzi, Marianna; Forcato, Claudio; Zeck, Briana; Ramaswami, Sitharam; Stafford, James; Faustin, Arline; Friedman, Daniel; Hidalgo, Eveline Teresa; Zagzag, David; Skok, Jane; Heguy, Adriana; Chiriboga, Luis; Conti, Valerio; Guerrini, Renzo; Iafrate, A John; Devinsky, Orrin; Tsirigos, Aristotelis; Golfinos, John G; Snuderl, Matija
Epilepsy is a heterogenous group of disorders defined by recurrent seizure activity due to abnormal synchronized activity of neurons. A growing number of epilepsy cases are believed to be caused by genetic factors and copy number variants (CNV) contribute to up to 5% of epilepsy cases. However, CNVs in epilepsy are usually large deletions or duplications involving multiple neurodevelopmental genes. In patients who underwent seizure focus resection for treatment-resistant epilepsy, whole genome DNA methylation profiling identified 3 main clusters of which one showed strong association with receptor tyrosine kinase (RTK) genes. We identified focal copy number gains involving epidermal growth factor receptor (EGFR) and PDGFRA loci. The dysplastic neurons of cases with amplifications showed marked overexpression of EGFR and PDGFRA, while glial and endothelial cells were negative. Targeted sequencing of regulatory regions and DNA methylation analysis revealed that only enhancer regions of EGFR and gene promoter of PDGFRA were amplified, while coding regions did not show copy number abnormalities or somatic mutations. Somatic focal copy number gains of noncoding regulatory represent a previously unrecognized genetic driver in epilepsy and a mechanism of abnormal activation of RTK genes. Upregulated RTKs provide a potential avenue for therapy in seizure disorders.
PMID: 33274363
ISSN: 1554-6578
CID: 4694512
Serial single-cell profiling analysis of metastatic TNBC during Nab-paclitaxel and pembrolizumab treatment
Deng, Jiehui; Thennavan, Aatish; Shah, Suhagi; Bagdatlioglu, Ece; Klar, Natalie; Heguy, Adriana; Marier, Christian; Meyn, Peter; Zhang, Yutong; Labbe, Kristen; Almonte, Christina; Krogsgaard, Michelle; Perou, Charles M; Wong, Kwok-Kin; Adams, Sylvia
PURPOSE/OBJECTIVE:Immunotherapy has recently been shown to improve outcomes for advanced PD-L1-positive triple-negative breast cancer (TNBC) in the Impassion130 trial, leading to FDA approval of the first immune checkpoint inhibitor in combination with taxane chemotherapy. To further develop predictive biomarkers and improve therapeutic efficacy of the combination, interrogation of the tumor immune microenvironment before therapy as well as during each component of treatment is crucial. Here we use single-cell RNA sequencing (scRNA-seq) on tumor biopsies to assess immune cell changes from two patients with advanced TNBC treated in a prospective trial at predefined serial time points, before treatment, on taxane chemotherapy and on chemo-immunotherapy. METHODS:Both patients (one responder and one progressor) received the trial therapy, in cycle 1 nab-paclitaxel given as single agent, in cycle 2 nab-paclitaxel in combination with pembrolizumab. Tumor core biopsies were obtained at baseline, 3 weeks (after cycle 1, chemotherapy alone) and 6 weeks (after cycle 2, chemo-immunotherapy). Single-cell RNA sequencing (scRNA-seq) of both cancer cells and infiltrating immune cells isolated were performed from fresh tumor core biopsy specimens by 10 × chromium sequencing. RESULTS:). In contrast, tumors from the patient with rapid disease progression showed a prevalent and persistent myeloid compartment. CONCLUSIONS:Our study provides a deep cellular analysis of on-treatment changes during chemo-immunotherapy for advanced TNBC, demonstrating not only feasibility of single-cell analyses on serial tumor biopsies but also the heterogeneity of TNBC and differences in on-treatment changes in responder versus progressor.
PMID: 32949350
ISSN: 1573-7217
CID: 4605282
Evidence for Environmental-human Microbiota Transfer at a Manufacturing Facility with Novel Work-related Respiratory Disease
Wu, Benjamin G; Kapoor, Bianca; Cummings, Kristin J; Stanton, Marcia L; Nett, Randall J; Kreiss, Kathleen; Abraham, Jerrold L; Colby, Thomas V; Franko, Angela D; Green, Francis H Y; Sanyal, Soma; Clemente, Jose C; Gao, Zhan; Coffre, Maryaline; Meyn, Peter; Heguy, Adriana; Li, Yonghua; Sulaiman, Imran; Borbet, Timothy C; Koralov, Sergei B; Tallaksen, Robert J; Wendland, Douglas; Bachelder, Vance D; Boylstein, Randy J; Park, Ju-Hyeong; Cox-Ganser, Jean M; Virji, M Abbas; Crawford, Judith A; Edwards, Nicole T; Veillette, Marc; Duchaine, Caroline; Warren, Krista; Lundeen, Sarah; Blaser, Martin J; Segal, Leopoldo N
INTRODUCTION/BACKGROUND:Workers' exposure to metalworking fluid (MWF) has been associated with respiratory disease. As part of a public health investigation of a manufacturing facility, we performed paired environmental and human sampling to evaluate cross-pollination of microbes between environment and host and possible effects on lung pathology present among workers. METHODS:Workplace environmental microbiota was evaluated in air and MWF samples. Human microbiota was evaluated in lung tissue samples from workers with respiratory symptoms found to have lymphocytic bronchiolitis and alveolar ductitis with B-cell follicles and emphysema, lung tissue controls, and in skin, nasal and oral samples from 302 workers from different areas of the facility. In vitro effects of MWF exposure on murine B-cells were assessed. RESULTS:Increased similarity of microbial composition was found between MWF samples and lung tissue samples of case workers compared to controls. Among workers in different locations within the facility, those that worked in machine shop area had skin, nasal and oral microbiota more closely related to the microbiota present in MWF samples. Lung samples from four index cases, and skin and nasal samples from workers in machine shop area were enriched with Pseudomonas, the dominant taxa in MWF. Exposure to used MWF stimulated murine B-cell proliferation in vitro, a hallmark cell subtype found in pathology of index cases. CONCLUSIONS:Evaluation of a manufacturing facility with a cluster of workers with respiratory disease supports cross-pollination of microbes from MWF to humans and suggests the potential for exposure to these microbes to be a health hazard.
PMID: 32673495
ISSN: 1535-4970
CID: 4528382
SARS-CoV-2 genomic characterization and clinical manifestation of the COVID-19 outbreak in Uruguay
Elizondo, Victoria; Harkins, Gordon W; Mabvakure, Batsirai; Smidt, Sabine; Zappile, Paul; Marier, Christian; Maurano, Matthew; Perez, Victoria; Mazza, Natalia; Beloso, Carolina; Ifran, Silvana; Fernandez, Mariana; Santini, Andrea; Perez, Veronica; Estevez, Veronica; Nin, Matilde; Manrique, Gonzalo; Perez, Leticia; Ross, Fabiana; Boschi, Susana; Zubillaga, Maria Noel; Balleste, Raquel; Dellicour, Simon; Heguy, Adriana; Duerr, Ralf
COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.
PMID: 33306459
ISSN: 2222-1751
CID: 4709432
Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City Region
Maurano, Matthew T; Ramaswami, Sitharam; Zappile, Paul; Dimartino, Dacia; Boytard, Ludovic; Ribeiro-Dos-Santos, André M; Vulpescu, Nicholas A; Westby, Gael; Shen, Guomiao; Feng, Xiaojun; Hogan, Megan S; Ragonnet-Cronin, Manon; Geidelberg, Lily; Marier, Christian; Meyn, Peter; Zhang, Yutong; Cadley, John A; Ordoñez, Raquel; Luther, Raven; Huang, Emily; Guzman, Emily; Arguelles-Grande, Carolina; Argyropoulos, Kimon V; Black, Margaret; Serrano, Antonio; Call, Melissa E; Kim, Min Jae; Belovarac, Brendan; Gindin, Tatyana; Lytle, Andrew; Pinnell, Jared; Vougiouklakis, Theodore; Chen, John; Lin, Lawrence H; Rapkiewicz, Amy; Raabe, Vanessa; Samanovic, Marie I; Jour, George; Osman, Iman; Aguero-Rosenfeld, Maria; Mulligan, Mark J; Volz, Erik M; Cotzia, Paolo; Snuderl, Matija; Heguy, Adriana
Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epi-demiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in Spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.
PMID: 33093069
ISSN: 1549-5469
CID: 4642522
Immune Response and Microbiota Profiles during Coinfection with Plasmodium vivax and Soil-Transmitted Helminths
Easton, Alice V; Raciny-Aleman, Mayra; Liu, Victor; Ruan, Erica; Marier, Christian; Heguy, Adriana; Yasnot, Maria Fernanda; Rodriguez, Ana; Loke, P'ng
The role of the gut microbiota during coinfection with soil-transmitted helminths (STH) and Plasmodium spp. is poorly understood. We examined peripheral blood and fecal samples from 130 individuals who were either infected with Plasmodium vivax only, coinfected with P. vivax and STH, infected with STH alone, or not infected with either P. vivax or STH. In addition to a complete blood count (CBC) with differential, transcriptional profiling of peripheral blood samples was performed by transcriptome sequencing (RNA-Seq), fecal microbial communities were determined by 16S rRNA gene sequencing, and circulating cytokine levels were measured by bead-based immunoassays. Differences in blood cell counts, including an increased percentage of neutrophils, associated with a transcriptional signature of neutrophil activation, were driven primarily by P. vivax infection. P. vivax infection was also associated with increased levels of interleukin 6 (IL-6), IL-8, and IL-10; these cytokine levels were not affected by STH coinfection. Surprisingly, P. vivax infection was more strongly associated with differences in the microbiota than STH infection. Children infected with only P. vivax exhibited elevated Bacteroides and reduced Prevotella and Clostridiaceae levels, but these differences were not observed in individuals coinfected with STH. We also observed that P. vivax parasitemia was higher in the STH-infected population. When we used machine learning to identify the most important predictors of the P. vivax parasite burden (among P. vivax-infected individuals), bacterial taxa were the strongest predictors of parasitemia. In contrast, circulating transforming growth factor β (TGF-β) was the strongest predictor of the Trichuris trichiura egg burden. This study provides unexpected evidence that the gut microbiota may have a stronger link with P. vivax than with STH infection.IMPORTANCEPlasmodium (malaria) and helminth parasite coinfections are frequent, and both infections can be affected by the host gut microbiota. However, the relationship between coinfection and the gut microbiota is unclear. By performing comprehensive analyses on blood/stool samples from 130 individuals in Colombia, we found that the gut microbiota may have a stronger relationship with the number of P. vivax (malaria) parasites than with the number of helminth parasites infecting a host. Microbiota analysis identified more predictors of the P. vivax parasite burden, whereas analysis of blood samples identified predictors of the helminth parasite burden. These results were unexpected, because we expected each parasite to be associated with greater differences in its biological niche (blood for P. vivax and the intestine for helminths). Instead, we find that bacterial taxa were the strongest predictors of P. vivax parasitemia levels, while circulating TGF-β levels were the strongest predictor of helminth parasite burdens.
PMID: 33082257
ISSN: 2150-7511
CID: 4642222
SARS-CoV-2 genomic characterization and clinical manifestation of the COVID-19 outbreak in Uruguay
Elizondo, Victoria; Harkins, Gordon W; Mabvakure, Batsirai; Smidt, Sabine; Zappile, Paul; Marier, Christian; Maurano, Matthew T; Perez, Victoria; Mazza, Natalia; Beloso, Carolina; Ifran, Silvana; Fernandez, Mariana; Santini, Andrea; Perez, Veronica; Estevez, Veronica; Nin, Matilde; Manrique, Gonzalo; Perez, Leticia; Ross, Fabiana; Boschi, Susana; Zubillaga, Maria Noel; Balleste, Raquel; Dellicour, Simon; Heguy, Adriana; Duerr, Ralf
COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.
PMCID:7553156
PMID: 33052352
ISSN: n/a
CID: 4637162
Hippocampal metabolite concentrations in schizophrenia vary in association with rare gene variants in the TRIO gene [Letter]
Malaspina, Dolores; Gonen, Oded; Rhodes, Haley; Hoffman, Kevin W; Heguy, Adriana; Walsh-Messinger, Julie; Chao, Moses V; Kranz, Thorsten M
PMID: 33183947
ISSN: 1573-2509
CID: 4671882
Association of Initial Viral Load in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Patients with Outcome and Symptoms
Argyropoulos, Kimon V; Serrano, Antonio; Hu, Jiyuan; Black, Margaret; Feng, Xiaojun; Shen, Guomiao; Call, Melissa; Kim, Min J; Lytle, Andrew; Belovarac, Brendan; Vougiouklakis, Theodore; Lin, Lawrence H; Moran, Una; Heguy, Adriana; Troxel, Andrea; Snuderl, Matija; Osman, Iman; Cotzia, Paolo; Jour, George
The dynamics of viral load (VL) of the 2019 novel coronavirus (severe acute respiratory syndrome coronavirus 2) and its association with different clinical parameters remain poorly characterized in the US patient population. Herein, we investigate associations between VL and parameters, such as severity of symptoms, disposition (admission versus direct discharge), length of hospitalization, admission to the intensive care unit, length of need for oxygen support, and overall survival in a cohort of 205 patients from a tertiary care center in New York City. VL was determined using quantitative PCR and log10 transformed for normalization. Univariate and multivariate regression models were used to test these associations. We found that diagnostic viral load is significantly lower in hospitalized patients than in patients not hospitalized (log10 VL = 3.3 versus 4.0; P = 0.018) after adjusting for age, sex, race, body mass index, and comorbidities. Higher VL was associated with shorter duration of the symptoms in all patients and hospitalized patients only and shorter hospital stay (coefficient = -2.02, -2.61, and -2.18; P < 0.001, P = 0.002, and P = 0.013, respectively). No significant association was noted between VL, admission to intensive care unit, length of oxygen support, and overall survival. Our findings suggest a higher shedding risk in less symptomatic patients, an important consideration for containment strategies in severe acute respiratory syndrome coronavirus 2. Furthermore, we identify a novel association between viral load and history of cancer. Larger studies are warranted to validate our findings.
PMCID:7332909
PMID: 32628931
ISSN: 1525-2191
CID: 4531612
Posttranslational regulation of the exon skipping machinery controls aberrant splicing in leukemia
Zhou, Yalu; Han, Cuijuan; Wang, Eric; Lorch, Adam H; Serafin, Valentina; Cho, Byoung-Kyu; Guttierrez Diaz, Blanca T; Calvo, Julien; Fang, Celestia; Khodadadi-Jamayran, Alireza; Tabaglio, Tommaso; Marier, Christian; Kuchmiy, Anna; Sun, Limin; Yacu, George; Filip, Szymon K; Jin, Qi; Takahashi, Yoh-Hei; Amici, David R; Rendleman, Emily J; Rawat, Radhika; Bresolin, Silvia; Paganin, Maddalena; Zhang, Cheng; Li, Hu; Kandela, Irawati; Politanska, Yuliya; Abdala-Valencia, Hiam; Mendillo, Marc L; Zhu, Ping; Palhais, Bruno; Van Vlierberghe, Pieter; Taghon, Tom; Aifantis, Iannis; Goo, Young Ah; Guccione, Ernesto; Heguy, Adriana; Tsirigos, Aristotelis; Wee, Keng Boon; Mishra, Rama K; Pflumio, Francoise; Accordi, Benedetta; Basso, Giuseppe; Ntziachristos, Panagiotis
Splicing alterations are common in disease, such as cancer, where mutations in splicing factor genes are frequently responsible for aberrant splicing. Here we present an alternative mechanism for splicing regulation in T cell acute lymphoblastic leukemia (T-ALL), that involves posttranslational stabilization of the splicing machinery via deubiquitination. We demonstrate there are extensive exon skipping changes in disease affecting proteasomal subunits, cell cycle regulators, and the RNA machinery. We present that the serine/arginine-rich splicing factors (SRSF), controlling exon skipping, are critical for leukemia cell survival. The ubiquitin-specific peptidase 7 (USP7) regulates SRSF6 protein levels via active deubiquitination and USP7 inhibition alters the exon skipping pattern and blocks T-ALL growth. The splicing inhibitor H3B-8800 affects splicing of proteasomal transcripts and proteasome activity and acts synergistically with proteasome inhibitors in inhibiting T-ALL growth. Our study provides the proof-of-principle for regulation of splicing factors via deubiquitination and suggests new therapeutic modalities in T-ALL.
PMID: 32444465
ISSN: 2159-8290
CID: 4447172