Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:huangt03

Total Results:

59


Regulation of DNA repair by ubiquitylation

Huang, Tony T; D'Andrea, Alan D
The process of ubiquitylation is best known for its role in targeting proteins for degradation by the proteasome. However, recent studies of DNA-repair and DNA-damage-response pathways have significantly broadened the scope of the role of ubiquitylation to include non-proteolytic functions of ubiquitin. These pathways involve the monoubiquitylation of key DNA-repair proteins that have regulatory functions in homologous recombination and translesion DNA synthesis, and involve the polyubiquitylation of nucleotide-excision-repair proteins
PMID: 16633336
ISSN: 1471-0072
CID: 69206

Regulation of monoubiquitinated PCNA by DUB autocleavage

Huang, Tony T; Nijman, Sebastian M B; Mirchandani, Kanchan D; Galardy, Paul J; Cohn, Martin A; Haas, Wilhelm; Gygi, Steven P; Ploegh, Hidde L; Bernards, Rene; D'Andrea, Alan D
Monoubiquitination is a reversible post-translational protein modification that has an important regulatory function in many biological processes, including DNA repair. Deubiquitinating enzymes (DUBs) are proteases that are negative regulators of monoubiquitination, but little is known about their regulation and contribution to the control of conjugated-substrate levels. Here, we show that the DUB ubiquitin specific protease 1 (USP1) deubiquitinates the DNA replication processivity factor, PCNA, as a safeguard against error-prone translesion synthesis (TLS) of DNA. Ultraviolet (UV) irradiation inactivates USP1 through an autocleavage event, thus enabling monoubiquitinated PCNA to accumulate and to activate TLS. Significantly, the site of USP1 cleavage is immediately after a conserved internal ubiquitin-like diglycine (Gly-Gly) motif. This mechanism is reminiscent of the processing of precursors of ubiquitin and ubiquitin-like modifiers by DUBs. Our results define a regulatory mechanism for protein ubiquitination that involves the signal-induced degradation of an inhibitory DUB
PMID: 16531995
ISSN: 1465-7392
CID: 69207

The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway

Nijman, Sebastian M B; Huang, Tony T; Dirac, Annette M G; Brummelkamp, Thijn R; Kerkhoven, Ron M; D'Andrea, Alan D; Bernards, Rene
Protein ubiquitination and deubiquitination are dynamic processes implicated in the regulation of numerous cellular pathways. Monoubiquitination of the Fanconi anemia (FA) protein FANCD2 appears to be critical in the repair of DNA damage because many of the proteins that are mutated in FA are required for FANCD2 ubiquitination. By screening a gene family RNAi library, we identify the deubiquitinating enzyme USP1 as a novel component of the Fanconi anemia pathway. Inhibition of USP1 leads to hyperaccumulation of monoubiquitinated FANCD2. Furthermore, USP1 physically associates with FANCD2, and the proteins colocalize in chromatin after DNA damage. Finally, analysis of crosslinker-induced chromosomal aberrations in USP1 knockdown cells suggests a role in DNA repair. We propose that USP1 deubiquitinates FANCD2 when cells exit S phase or recommence cycling after a DNA damage insult and may play a critical role in the FA pathway by recycling FANCD2
PMID: 15694335
ISSN: 1097-2765
CID: 69208

Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress

Huang, Tony T; Wuerzberger-Davis, Shelly M; Wu, Zhao-Hui; Miyamoto, Shigeki
The transcription factor NF-kappaB is critical for setting the cellular sensitivities to apoptotic stimuli, including DNA damaging anticancer agents. Central to NF-kappaB signaling pathways is NEMO/IKKgamma, the regulatory subunit of the cytoplasmic IkappaB kinase (IKK) complex. While NF-kappaB activation by genotoxic stress provides an attractive paradigm for nuclear-to-cytoplasmic signaling pathways, the mechanism by which nuclear DNA damage modulates NEMO to activate cytoplasmic IKK remains unknown. Here, we show that genotoxic stress causes nuclear localization of IKK-unbound NEMO via site-specific SUMO-1 attachment. Surprisingly, this sumoylation step is ATM-independent, but nuclear localization allows subsequent ATM-dependent ubiquitylation of NEMO to ultimately activate IKK in the cytoplasm. Thus, genotoxic stress induces two independent signaling pathways, SUMO-1 modification and ATM activation, which work in concert to sequentially cause nuclear targeting and ubiquitylation of free NEMO to permit the NF-kappaB survival pathway. These SUMO and ubiquitin modification pathways may serve as anticancer drug targets
PMID: 14651848
ISSN: 0092-8674
CID: 69209

The zinc finger domain of NEMO is selectively required for NF-kappa B activation by UV radiation and topoisomerase inhibitors

Huang, Tony T; Feinberg, Shelby L; Suryanarayanan, Sainath; Miyamoto, Shigeki
Exposure of mammalian cells to UV radiation was proposed to stimulate the transcription factor NF-kappa B by a unique mechanism. Typically, rapid and strong inducers of NF-kappa B, such as tumor necrosis factor alpha (TNF-alpha) and bacterial lipopolysaccharide (LPS), lead to rapid phosphorylation and proteasomal degradation of its inhibitory protein, I kappa B alpha. In contrast, UV, a relatively slower and weaker inducer of NF-kappa B, was suggested not to require phosphorylation of I kappa B alpha for its targeted degradation by the proteasome. We now provide evidence to account for this peculiar degradation process of I kappa B alpha. The phospho-I kappa B alpha generated by UV is only detectable by expressing a Delta F-box mutant of the ubiquitin ligase beta-TrCP, which serves as a specific substrate trap for serine 32 and 36 phosphorylated I kappa B alpha. In agreement with this finding, we also find that the I kappa B kinase (IKK) phospho-acceptor sites on I kappa B alpha, core components of the IKK signalsome, and IKK catalytic activity are all required for UV signaling. Furthermore, deletion and point mutation analyses reveal that both the amino-terminal IKK-binding and the carboxy-terminal putative zinc finger domains of NEMO (IKK gamma) are critical for UV-induced NF-kappa B activation. Interestingly, the zinc finger domain is also required for NF-kappa B activation by two other slow and weak inducers, camptothecin and etoposide. In contrast, the zinc finger module is largely dispensable for NF-kappa B activation by the rapid and strong inducers LPS and TNF-alpha. Thus, we suggest that the zinc finger domain of NEMO likely represents a point of convergence for signaling pathways initiated by slow and weak NF-kappa B-activating conditions
PMCID:133970
PMID: 12138192
ISSN: 0270-7306
CID: 69210

Postrepression activation of NF-kappaB requires the amino-terminal nuclear export signal specific to IkappaBalpha

Huang, T T; Miyamoto, S
One of the most prominent NF-kappaB target genes in mammalian cells is the gene encoding one of its inhibitor proteins, IkappaBalpha. The increased synthesis of IkappaBalpha leads to postinduction repression of nuclear NF-kappaB activity. However, it is unknown why IkappaBalpha, among multiple IkappaB family members, is involved in this process and what significance this feedback regulation has beyond terminating NF-kappaB activity. Herein, we report an important IkappaBalpha-specific function dictated by its amino-terminal nuclear export sequence (N-NES). The IkappaBalpha N-NES is necessary for the postinduction export of nuclear NF-kappaB, which is a critical event in reestablishing a permissive condition for NF-kappaB to be rapidly reactivated. We show that although IkappaBalpha and another IkappaB member, IkappaBbeta, can enter the nucleus and repress NF-kappaB DNA-binding activity during the postinduction phase, only IkappaBalpha allows the efficient export of nuclear NF-kappaB. Moreover, swapping the N-terminal region of IkappaBbeta for the corresponding IkappaBalpha sequence is sufficient for the IkappaB chimera protein to export NF-kappaB similarly to IkappaBalpha during the postinduction state. Our findings provide a mechanistic explanation of why IkappaBalpha but not other IkappaB members is crucial for postrepression activation of NF-kappaB. We propose that this IkappaBalpha-specific function is important for certain physiological and pathological conditions where NF-kappaB needs to be rapidly reactivated
PMCID:87155
PMID: 11416149
ISSN: 0270-7306
CID: 130276

NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events

Huang, T T; Wuerzberger-Davis, S M; Seufzer, B J; Shumway, S D; Kurama, T; Boothman, D A; Miyamoto, S
Activation of the transcription factor NF-kappaB by extracellular signals involves its release from the inhibitor protein IkappaBalpha in the cytoplasm and subsequent nuclear translocation. NF-kappaB can also be activated by the anticancer agent camptothecin (CPT), which inhibits DNA topoisomerase (Topo) I activity and causes DNA double-strand breaks during DNA replication to induce S phase-dependent cytotoxicity. Here we show that CPT activates NF-kappaB by a mechanism that is dependent on initial nuclear DNA damage followed by cytoplasmic signaling events. NF-kappaB activation by CPT is dramatically diminished in cytoplasts and in CEM/C2 cells expressing a mutant Topo I protein that fails to bind CPT. This response is intensified in S phase cell populations and is prevented by the DNA polymerase inhibitor aphidicolin. In addition, CPT activation of NF-kappaB involves degradation of cytoplasmic IkappaBalpha by the ubiquitin-proteasome pathway in a manner that depends on the IkappaB kinase complex. Finally, inhibition of NF-kappaB activation augments CPT-induced apoptosis. These findings elucidate the progression of signaling events that initiates in the nucleus with CPT-Topo I interaction and continues in the cytoplasm resulting in degradation of IkappaBalpha and nuclear translocation of NF-kappaB to attenuate the apoptotic response
PMID: 10734098
ISSN: 0021-9258
CID: 130278

A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes

Huang, T T; Kudo, N; Yoshida, M; Miyamoto, S
Appropriate subcellular localization is crucial for regulation of NF-kappaB function. Herein, we show that latent NF-kappaB complexes can enter and exit the nucleus in preinduction states. The nuclear export inhibitor leptomycin B (LMB) sequestered NF-kappaB/IkappaBalpha complexes in the nucleus. Using deletion and site-directed mutagenesis, we identified a previously uncharacterized nuclear export sequence in residues 45-54 of IkappaBalpha that was required for cytoplasmic localization of inactive complexes. This nuclear export sequence also caused nuclear exclusion of heterologous proteins in a LMB-sensitive manner. Importantly, a LMB-insensitive CRM1 mutant (Crm1-K1) abolished LMB-induced nuclear accumulation of the inactive complexes. Moreover, a cell-permeable p50 NF-kappaB nuclear localization signal peptide also blocked these LMB effects. These results suggest that NF-kappaB/IkappaBalpha complexes shuttle between the cytoplasm and nucleus by a nuclear localization signal-dependent nuclear import and a CRM1-dependent nuclear export. The LMB-induced nuclear complexes could not bind DNA and were inaccessible to signaling events, because LMB inhibited NF-kappaB activation without affecting the subcellular localization of upstream kinases IKKbeta and NIK. Our findings indicate that the dominant nuclear export over nuclear import contributes to the largely cytoplasmic localization of the inactive complexes to achieve efficient NF-kappaB activation by extracellular signals
PMCID:15505
PMID: 10655476
ISSN: 0027-8424
CID: 130279

Cellular and molecular responses to topoisomerase I poisons. Exploiting synergy for improved radiotherapy

Miyamoto, S; Huang, T T; Wuerzberger-Davis, S; Bornmann, W G; Pink, J J; Tagliarino, C; Kinsella, T J; Boothman, D A
The efficacy of topoisomerase (Topo) I-active drugs may be improved by better understanding the molecular and cellular responses of tumor compared to normal cells after genotoxic insults. Ionizing radiation (IR) + Topo I-active drugs (e.g., Topotecan) caused synergistic cell killing in various human cancer cells, even in cells from highly radioresistant tumors. Topo I poisons had to be added either during or immediately after IR. Synergy was caused by DNA lesion modification mechanisms as well as by concomitant stimulation of two pathways of cell death: necrosis (IR) + apoptosis (Topo I poisons). Cumulative data favor a mechanism of synergistic cell killing caused by altered DNA lesion modification and enhanced apoptosis. However, alterations in cell cycle regulation may also play a role in the synergy between these two agents in certain human cancers. We recently showed that NF-kappa B, a known anti-apoptotic factor, was activated in various cancer cells after poisoning Topo I using clinically active drugs. NF-kappa B activation was dependent on initial nuclear DNA damage followed by cytoplasmic signaling events. Cytoplasmic signaling leading to NF-kappa B activation after Topo I poisons was diminished in cytoplasts (lacking nuclei) and in CEM/C2 cells that expressed a mutant Topo I protein that did not interact with Topo I-active drugs. NF-kappa B activation was intensified in S-phase and blocked by aphidicolin, suggesting that activation was a result of double-strand break formation due to Topo I poisoning and DNA replication. Dominant-negative I kappa B expression augmented Topo I poison-mediated apoptosis. Elucidation of molecular signal transduction pathways after Topo I drug-IR combinations may lead to improved radiotherapy by blocking anti-apoptotic NF-kappa B responses. Recent data also indicate that synergy caused by IR + Topo I poisons is different from radiosensitization by beta-lapachone (beta-lap), a 'reported' Topo I and II-alpha poison in vitro. In fact, beta-lap does not kill cells by poisoning either Topo I or II-alpha in vivo. Instead, the compound is 'activated' by an IR (damage)-inducible enzyme, NAD(P)H:quinone oxidoreductase (NQO1), a gene cloned as x-ray-inducible transcript #3, xip3. Unlike the lesion modification pathway induced by IR + Topo I drugs, beta-lap kills cells via NQO1 futile cycle metabolism. Downstream apoptosis caused by beta-lap appears to be noncaspase-mediated, involving calpain or a calpain-like protease. Thus, although Topo I poisons or beta-lap in combination with IR both synergistically kill cancer cells, the mechanisms are very different
PMID: 11193903
ISSN: 0077-8923
CID: 130277