Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:reizib01

Total Results:

78


Transcription factor Zfx controls BCR-induced proliferation and survival of B lymphocytes

Arenzana, Teresita L; Smith-Raska, Matthew R; Reizis, Boris
The development, homeostasis, and function of B lymphocytes involve multiple rounds of B-cell receptor (BCR)-controlled proliferation and prolonged maintenance. We analyzed the role of transcription factor Zfx, a recently identified regulator of hematopoietic stem cell maintenance, in B-cell development and homeostasis. Panhematopoietic or B cell-specific deletion of Zfx in the bone marrow blocked B-cell development at the pre-BCR selection checkpoint. Zfx deficiency in peripheral B cells caused accelerated B-cell turnover, depletion of mature recirculating B cells, and delayed T-dependent antibody responses. In addition, the numbers and function of B-1 cell lineage were reduced. Zfx-deficient B cells showed normal proximal BCR signaling, but impaired BCR-induced proliferation and survival in vitro. This was accompanied by aberrantly enhanced and prolonged integrated stress response and by delayed induction of cyclin D2 and Bcl-xL proteins. Thus, Zfx restrains the stress response and couples antigen receptor signaling to cell expansion and maintenance during B-cell development and peripheral homeostasis. These results identify a novel transcriptional regulator of the B-cell lineage and highlight the common genetic control of stem cell maintenance and lymphocyte homeostasis.
PMCID:2700322
PMID: 19329779
ISSN: 0006-4971
CID: 1377612

IL7-hCD25 and IL7-Cre BAC transgenic mouse lines: new tools for analysis of IL-7 expressing cells

Repass, John F; Laurent, Micheline N; Carter, Carla; Reizis, Boris; Bedford, Mark T; Cardenas, Kim; Narang, Priyanka; Coles, Mark; Richie, Ellen R
IL-7 is a cytokine that is required for T-cell development and homeostasis as well as for lymph node organogenesis. Despite the importance of IL-7 in the immune system and its potential therapeutic relevance, questions remain regarding the sites of IL-7 synthesis, specific cell types involved and molecular mechanisms regulating IL-7 expression. To address these issues, we generated two bacterial artificial chromosome (BAC) transgenic mouse lines in which IL-7 regulatory elements drive expression of either Cre recombinase or a human CD25 (hCD25) cell surface reporter molecule. Expression of the IL-7.hCD25 BAC transgene, detected by reactivity with anti-hCD25 antibody, mimicked endogenous IL-7 expression. Fetal and adult tissues from crosses between IL-7.Cre transgenic mice and Rosa26R or R26-EYFP reporters demonstrated X-gal or YFP staining in tissues known to express endogenous IL-7 at some stage during development. These transgenic lines provide novel genetic tools to identify IL-7 producing cells in various tissues and to manipulate gene expression selectively in IL-7 expressing cells.
PMID: 19263498
ISSN: 1526-954x
CID: 1377622

Type I IFN-mediated protection of macrophages and dendritic cells secures control of murine coronavirus infection

Cervantes-Barragan, Luisa; Kalinke, Ulrich; Zust, Roland; Konig, Martin; Reizis, Boris; Lopez-Macias, Constantino; Thiel, Volker; Ludewig, Burkhard
The swift production of type I IFNs is one of the fundamental aspects of innate immune responses against viruses. Plasmacytoid dendritic cell-derived type I IFNs are of prime importance for the initial control of highly cytopathic viruses such as the mouse hepatitis virus (MHV). The aim of this study was to determine the major target cell populations of this first wave of type I IFNs. Generation of bone marrow-chimeric mice expressing the type I IFN receptor (IFNAR) on either hemopoietic or non-bone marrow-derived cells revealed that the early control of MHV depended mainly on IFNAR expression on hemopoietic cells. To establish which cell population responds most efficiently to type I IFNs, mice conditionally deficient for the IFNAR on different leukocyte subsets were infected with MHV. This genetic analysis revealed that IFNAR expression on LysM+ macrophages and CD11c+ dendritic cells was most important for the early containment of MHV within secondary lymphoid organs and to prevent lethal liver disease. This study identifies type I IFN-mediated cross-talk between plasmacytoid dendritic cells on one side and macrophages and conventional dendritic cells on the other, as an essential cellular pathway for the control of fatal cytopathic virus infection.
PMID: 19124753
ISSN: 0022-1767
CID: 1377632

Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome

Birnberg, Tal; Bar-On, Liat; Sapoznikov, Anita; Caton, Michele L; Cervantes-Barragan, Luisa; Makia, Divine; Krauthgamer, Rita; Brenner, Ori; Ludewig, Burkhard; Brockschnieder, Damian; Riethmacher, Dieter; Reizis, Boris; Jung, Steffen
Dendritic cells are critically involved in the promotion and regulation of T cell responses. Here, we report a mouse strain that lacks conventional CD11c(hi) dendritic cells (cDCs) because of constitutive cell-type specific expression of a suicide gene. As expected, cDC-less mice failed to mount effective T cell responses resulting in impaired viral clearance. In contrast, neither thymic negative selection nor T regulatory cell generation or T cell homeostasis were markedly affected. Unexpectedly, cDC-less mice developed a progressive myeloproliferative disorder characterized by prominent extramedullary hematopoiesis and increased serum amounts of the cytokine Flt3 ligand. Our data identify a critical role of cDCs in the control of steady-state hematopoiesis, revealing a feedback loop that links peripheral cDCs to myelogenesis through soluble growth factors, such as Flt3 ligand.
PMID: 19062318
ISSN: 1074-7613
CID: 1377642

Regulation of hierarchical clustering and activation of innate immune cells by dendritic cells

Kang, Suk-Jo; Liang, Hong-Erh; Reizis, Boris; Locksley, Richard M
An early granulomatous response, characterized by collections of white blood cells at foci surrounding pathogens, occurs after infection by many intracellular organisms, including Listeria, but how these clusters become organized and for what purpose remain poorly understood. Here, we showed that dendritic cell (DC) activation by Listeria nucleated rapid clustering of innate cells, including granulocytes, natural killer (NK) cells, and monocytes, to sites of bacteria propagation where interleukin-12 was expressed in the spleen. Clustered NK cells expressed interferon-gamma (IFN-gamma), which was necessary for the activation and maturation of colocalized monocytes to tumor necrosis factor- and inducible nitric oxide synthase-producing DCs (TipDCs). NK cell clustering was necessary for IFN-gamma production and required pertussis-toxin-sensitive recruitment, in part mediated by the chemokine receptor CCR5, and MyD88 adaptor-mediated signaling. Thus, spatial organization of the immune response by DCs between 6 and 24 hr ensures functional activation of innate cells, which restricts pathogens before adaptive immunity is fully activated.
PMCID:2858430
PMID: 19006696
ISSN: 1074-7613
CID: 1377652

Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development

Cisse, Babacar; Caton, Michele L; Lehner, Manfred; Maeda, Takahiro; Scheu, Stefanie; Locksley, Richard; Holmberg, Dan; Zweier, Christiane; den Hollander, Nicolette S; Kant, Sarina G; Holter, Wolfgang; Rauch, Anita; Zhuang, Yuan; Reizis, Boris
Plasmacytoid dendritic cells (PDCs) represent a unique immune cell type specialized in type I interferon (IFN) secretion in response to viral nucleic acids. The molecular control of PDC lineage specification has been poorly understood. We report that basic helix-loop-helix transcription factor (E protein) E2-2/Tcf4 is preferentially expressed in murine and human PDCs. Constitutive or inducible deletion of murine E2-2 blocked the development of PDCs but not of other lineages and abolished IFN response to unmethylated DNA. Moreover, E2-2 haploinsufficiency in mice and in human Pitt-Hopkins syndrome patients was associated with aberrant expression profile and impaired IFN response of the PDC. E2-2 directly activated multiple PDC-enriched genes, including transcription factors involved in PDC development (SpiB, Irf8) and function (Irf7). These results identify E2-2 as a specific transcriptional regulator of the PDC lineage in mice and humans and reveal a key function of E proteins in the innate immune system.
PMCID:2631034
PMID: 18854153
ISSN: 0092-8674
CID: 1377662

Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms

Hou, Baidong; Reizis, Boris; DeFranco, Anthony L
Toll-like receptors (TLRs) play prominent roles in initiating immune responses to infection, but their roles in particular cell types in vivo are not established. Here we report the generation of mice selectively lacking the crucial TLR-signaling adaptor MyD88 in dendritic cells (DCs). In these mice, the early production of inflammatory cytokines, especially IL-12, was substantially reduced after TLR stimulation. Whereas the innate interferon-gamma response of natural killer cells and of natural killer T cells and the Th1 polarization of antigen-specific CD4(+) T cells were severely compromised after treatment with a soluble TLR9 ligand, they were largely intact after administration of an aggregated TLR9 ligand. These results demonstrate that the physical form of a TLR ligand affects which cells can respond to it and that DCs and other innate immune cells can respond via TLRs and collaborate in promoting Th1 adaptive immune responses to an aggregated stimulus.
PMCID:2847796
PMID: 18656388
ISSN: 1074-7613
CID: 1377672

Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice

Travis, Mark A; Reizis, Boris; Melton, Andrew C; Masteller, Emma; Tang, Qizhi; Proctor, John M; Wang, Yanli; Bernstein, Xin; Huang, Xiaozhu; Reichardt, Louis F; Bluestone, Jeffrey A; Sheppard, Dean
The cytokine transforming growth factor-beta (TGF-beta) is an important negative regulator of adaptive immunity. TGF-beta is secreted by cells as an inactive precursor that must be activated to exert biological effects, but the mechanisms that regulate TGF-beta activation and function in the immune system are poorly understood. Here we show that conditional loss of the TGF-beta-activating integrin alpha(v)beta8 on leukocytes causes severe inflammatory bowel disease and age-related autoimmunity in mice. This autoimmune phenotype is largely due to lack of alpha(v)beta8 on dendritic cells, as mice lacking alpha(v)beta8 principally on dendritic cells develop identical immunological abnormalities as mice lacking alpha(v)beta8 on all leukocytes, whereas mice lacking alpha(v)beta8 on T cells alone are phenotypically normal. We further show that dendritic cells lacking alpha(v)beta8 fail to induce regulatory T cells (T(R) cells) in vitro, an effect that depends on TGF-beta activity. Furthermore, mice lacking alpha(v)beta8 on dendritic cells have reduced proportions of T(R) cells in colonic tissue. These results suggest that alpha(v)beta8-mediated TGF-beta activation by dendritic cells is essential for preventing immune dysfunction that results in inflammatory bowel disease and autoimmunity, effects that are due, at least in part, to the ability of alpha(v)beta8 on dendritic cells to induce and/or maintain tissue T(R) cells.
PMCID:2670239
PMID: 17694047
ISSN: 0028-0836
CID: 1377682

Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen

Caton, Michele L; Smith-Raska, Matthew R; Reizis, Boris
Signaling through Notch receptors and their transcriptional effector RBP-J is essential for lymphocyte development and function, whereas its role in other immune cell types is unclear. We tested the function of the canonical Notch-RBP-J pathway in dendritic cell (DC) development and maintenance in vivo. Genetic inactivation of RBP-J in the bone marrow did not preclude DC lineage commitment but caused the reduction of splenic DC fraction. The inactivation of RBP-J in DCs using a novel DC-specific deleter strain caused selective loss of the splenic CD8(-) DC subset and reduced the frequency of cytokine-secreting CD8(-) DCs after challenge with Toll-like receptor ligands. In contrast, other splenic DC subsets and DCs in the lymph nodes and tissues were unaffected. The RBP-J-deficient splenic CD8(-) DCs were depleted at the postprogenitor stage, exhibited increased apoptosis, and lost the expression of the Notch target gene Deltex1. In the spleen, CD8(-) DCs were found adjacent to cells expressing the Notch ligand Delta-like 1 in the marginal zone (MZ). Thus, canonical Notch-RBP-J signaling controls the maintenance of CD8(-) DCs in the splenic MZ, revealing an unexpected role of the Notch pathway in the innate immune system.
PMCID:2118632
PMID: 17591855
ISSN: 0022-1007
CID: 1377692

Zfx controls the self-renewal of embryonic and hematopoietic stem cells

Galan-Caridad, Jose M; Harel, Sivan; Arenzana, Teresita L; Hou, Z Esther; Doetsch, Fiona K; Mirny, Leonid A; Reizis, Boris
Stem cells (SC) exhibit a unique capacity for self-renewal in an undifferentiated state. It is unclear whether the self-renewal of pluripotent embryonic SC (ESC) and of tissue-specific adult SC such as hematopoietic SC (HSC) is controlled by common mechanisms. The deletion of transcription factor Zfx impaired the self-renewal but not the differentiation capacity of murine ESC; conversely, Zfx overexpression facilitated ESC self-renewal by opposing differentiation. Furthermore, Zfx deletion abolished the maintenance of adult HSC but did not affect erythromyeloid progenitors or fetal HSC. Zfx-deficient ESC and HSC showed increased apoptosis and SC-specific upregulation of stress-inducible genes. Zfx directly activated common target genes in ESC and HSC, as well as ESC-specific target genes including ESC self-renewal regulators Tbx3 and Tcl1. These studies identify Zfx as a shared transcriptional regulator of ESC and HSC, suggesting a common genetic basis of self-renewal in embryonic and adult SC.
PMCID:1899089
PMID: 17448993
ISSN: 0092-8674
CID: 1377702