Searched for: in-biosketch:yes
person:salzej01
Interleukin-11 potentiates oligodendrocyte survival and maturation, and myelin formation
Zhang, Yueting; Taveggia, Carla; Melendez-Vasquez, Carmen; Einheber, Steven; Raine, Cedric S; Salzer, James L; Brosnan, Celia F; John, Gareth R
Mechanisms that regulate oligodendrocyte survival and myelin formation are an intense focus of research into myelin repair in the lesions of multiple sclerosis (MS). Although demyelination and oligodendrocyte loss are pathological hallmarks of the disease, increased oligodendrocyte numbers and remyelination are frequently observed in early lesions, but these diminish as the disease course progresses. In the current study, we used a microarray-based approach to investigate genes regulating repair in MS lesions, and identified interleukin-11 (IL-11) as an astrocyte-derived factor that potentiates oligodendrocyte survival and maturation, and myelin formation. IL-11 was induced in human astrocyte cultures by the cytokines IL-1beta and TGFbeta1, which are both prominently expressed in MS plaques. In MS tissue samples, IL-11 was expressed by reactive astrocytes, with expression particularly localized at the myelinated border of both active and silent lesions. Its receptor, IL-11R alpha, was expressed by oligodendrocytes. In experiments in human cultures in vitro, IL-11R alpha localized to immature oligodendrocytes, and its expression decreased during maturation. In cultures treated with IL-11, we observed a significant increase in oligodendrocyte number, and this was associated with enhanced oligodendrocyte survival and maturation. Importantly, we also found that IL-11 treatment was associated with significantly increased myelin formation in rodent CNS cocultures. These data are the first to implicate IL-11 in oligodendrocyte viability, maturation, and myelination. We suggest that this pathway may represent a potential therapeutic target for oligodendrocyte protection and remyelination in MS
PMID: 17122042
ISSN: 1529-2401
CID: 69435
Axonal regulation of myelination by neuregulin 1
Nave, Klaus-Armin; Salzer, James L
Neuregulins comprise a family of epidermal growth factor-like ligands that interact with ErbB receptor tyrosine kinases to control many aspects of neural development. One of the most dramatic effects of neuregulin-1 is on glial cell differentiation. The membrane-bound neuregulin-1 type III isoform is an axonal ligand for glial ErbB receptors that regulates the early Schwann cell lineage, including the generation of precursors. Recent studies have shown that the amount of neuregulin-1 type III expressed on axons also dictates the glial phenotype, with a threshold level triggering Schwann cell myelination. Remarkably, neuregulin-1 type III also regulates Schwann cell membrane growth to adjust myelin sheath thickness to match axon caliber precisely. Whether this signaling system operates in central nervous system myelination remains an open question of major importance for human demyelinating diseases
PMID: 16962312
ISSN: 0959-4388
CID: 68993
Disrupted Axo-Glial Junctions Result in Accumulation of Abnormal Mitochondria at Nodes of Ranvier
Einheber S; Bhat MA; Salzer JL
Mitochondria and other membranous organelles are frequently enriched in the nodes and paranodes of peripheral myelinated axons, particularly those of large caliber. The physiologic role(s) of this organelle enrichment and the rheologic factors that regulate it are not well understood. Previous studies suggest that axonal transport of organelles across the nodal/paranodal region is locally regulated. In this study, we have examined the ultrastructure of myelinated axons in the sciatic nerves of mice deficient in the contactin-associated protein (Caspr), an integral junctional component. These mice, which lack the normal septate-like junctions that promote attachment of the glial (paranodal) loops to the axon, contain aberrant mitochondria in their nodal/paranodal regions. These mitochondria are typically large and swollen and occupy prominent varicosities of the nodal axolemma. In contrast, mitochondria located outside the nodal/paranodal regions of the myelinated axons appear normal. These findings suggest that paranodal junctions regulate mitochondrial transport and function in the axoplasm of the nodal/paranodal region of myelinated axons of peripheral nerves. They further implicate the paranodal junctions in playing a role, either directly or indirectly, in the local regulation of energy metabolism in the nodal region
PMCID:1855224
PMID: 17460780
ISSN: 1741-0533
CID: 94629
Neurofascin interactions play a critical role in clustering sodium channels, ankyrin(G) and betaIV spectrin at peripheral nodes of Ranvier
Koticha, Darshan; Maurel, Patrice; Zanazzi, George; Kane-Goldsmith, Noriko; Basak, Sayantani; Babiarz, Joanne; Salzer, James; Grumet, Martin
The Ig cell adhesion molecules (CAM) neurofascin (NF) and Nr-CAM are localized at developing nodes of Ranvier in peripheral myelinated axons prior to clustering of Na(+) channels. Different isoforms of NF are expressed on neurons and glia, and NF binding on both cells has been suggested to play roles in node and paranode formation. To clarify the role of NF further, we analyzed effects of NF-Fc fusion proteins in Schwann cell-DRG neuron myelinating cocultures. NF-Fc significantly inhibited nodal clustering of Na(+) channels, ankyrin(G), and betaIV spectrin, and modestly reduced Caspr clustering at paranodal junctions; it did not significantly affect lengths or numbers of myelin-positive segments, axon initial segments, or accumulations of phosphorylated-ERM proteins in Schwann cell nodal microvilli. NF-Fc binds to Schwann cells but little or no binding to DRG neurons was detected. The results suggest a critical early role for axonal NF in clustering of Na(+) channels at nodes of Ranvier via interactions with receptors on Schwann cells
PMID: 16566914
ISSN: 0012-1606
CID: 63125
Expression of neurotrimin in the normal and injured adult human spinal cord
Grijalva, I; Li, X; Marcillo, A; Salzer, J L; Levi, A D
STUDY DESIGN/METHODS:Neurotrimin (Ntm) is a member of the family of neural cell adhesion molecules. Its expression pattern suggests that Ntm promotes axonal fasciculation, guides nerve fibers to specific targets and stabilizes synapses as it accumulates coincident with synaptogenesis. Strong labeling of Ntm was observed in motor and sensory areas of the postnatal rat cortex. It is not known whether Ntm is present in adult human spinal cord (SC). In the present study, a monoclonal antibody specific for Ntm (1B1), is applied to the first study of the expression of Ntm in normal and injured adult human SC. OBJECTIVE:(1) To investigate the expression pattern of Ntm in adult normal human SC, and (2) to observe the changes of Ntm expression after SC injury and compare the differences between normal and injured adult human SC. METHODS:Human SC tissue was obtained from necropsies of patients with (n=5) and without (n=4) SC injury. The 1B1 Ntm monoclonal antibody was used for immunohistochemical staining on paraffin embedded sections with an ABC kit. RESULTS:(1) In total, 12 slides were analyzed for each group from both cervical and thoracic levels. Motor neurons and Clarke's neurons and glial-like cells were mild to moderately positive in all uninjured SC specimens. (2) In injured SC, no staining was observed in the injury epicenter between two and three levels proximally and distally, but was detected five levels away. (3) In patients older than 67 years of age, Ntm-positive inclusions were present in the white matter of the SC with or without injury. (4) Some meningeal cells were strongly Ntm-positive, especially in the uninjured human SC. CONCLUSION/CONCLUSIONS:Ntm is expressed by motor and Clarke's neurons and glial cells in uninjured human SC. The downregulation of Ntm in the injured SC suggests that its expression is regulated by afferent input.
PMID: 16172623
ISSN: 1362-4393
CID: 3782252
Latent TGF-{beta}1-transduced CD4+ T cells suppress the progression of allergic encephalomyelitis
Murano, Mitsuyuki; Xiong, Xiaozhong; Murano, Naoko; Salzer, James L; Lafaille, Juan J; Tsiagbe, Vincent K
Systemic injection of small amounts of transforming growth factor-beta (TGF-beta), a cytokine produced by lymphoid and other cells, has a profound effect in protecting mice from the inflammatory demyelinating lesions of experimental allergic encephalomyelitis (EAE; an animal model for multiple sclerosis). However, TGF-beta has side-effects, which might be avoided if the cells producing TGF-beta can be delivered to the affected site in the nervous system to insure its local release in small amounts. Myelin basic protein (MBP)-specific, cloned CD4(+) T cells were engineered by retroviral transduction to produce latent TGF-beta. Studies about the spontaneous form of EAE in T cell receptor (TCR)-transgenic recombination-activating gene (RAG)-1(-/-) mice showed that essentially all of the MBP-specific, TCR-transgenic RAG-1(-/-) (BALB/cxB10.PL)F1 mice develop spontaneous EAE by the age of 11 weeks. By 12 weeks, 25-50% of the mice have died from disease. A single injection of TGF-beta1-transduced T helper cell type 1 (Th1) cells significantly protected the mice from EAE, and untransduced Th1 cells did not protect. MBP-specific BALB/c Th2 clones, transduced with TGF-beta1-internal ribosome entry site-green fluorescent protein (GFP) significantly reduced EAE induction by untransduced Th1 cells in RAG-1(-/-) B10.PL mice. Furthermore, the GFP(+) TGF-beta1-producing Th2 cells were detectable in the spinal cords of the injected mice
PMID: 16244108
ISSN: 0741-5400
CID: 61318
Differential expression of proteoglycans at central and peripheral nodes of Ranvier
Melendez-Vasquez, Carmen; Carey, David J; Zanazzi, George; Reizes, Ofer; Maurel, Patrice; Salzer, James L
The nodes of Ranvier are regularly spaced gaps between myelin sheaths that are markedly enriched in voltage-gated sodium channels and associated proteins. Myelinating glia play a key role in promoting node formation, although the requisite glial signals remain poorly understood. In this study, we have examined the expression of glial proteoglycans in the peripheral and central nodes. We report that the heparan sulfate proteoglycan, syndecan-3, becomes highly enriched with PNS node formation; its ligand, collagen V, is also concentrated at the PNS nodes and at lower levels along the abaxonal membrane. The V1 isoform of versican, a chondroitin sulfate proteoglycan, is also present in the nodal gap. By contrast, CNS nodes are enriched in versican isoform V2, but not syndecan-3. We have examined the molecular composition of the PNS nodes in syndecan-3 knockout mice. Nodal components are normally expressed in mice deficient in syndecan-3, suggesting that it has a nonessential role in the organization of nodes in the adult. These results indicate that the molecular composition and extracellular environment of the PNS and CNS nodes of Ranvier are significantly distinct
PMID: 16035076
ISSN: 0894-1491
CID: 61319
Neuregulin-1 type III determines the ensheathment fate of axons
Taveggia, Carla; Zanazzi, George; Petrylak, Ashley; Yano, Hiroko; Rosenbluth, Jack; Einheber, Steven; Xu, Xiaorong; Esper, Raymond M; Loeb, Jeffrey A; Shrager, Peter; Chao, Moses V; Falls, Douglas L; Role, Lorna; Salzer, James L
The signals that determine whether axons are ensheathed or myelinated by Schwann cells have long been elusive. We now report that threshold levels of neuregulin-1 (NRG1) type III on axons determine their ensheathment fate. Ensheathed axons express low levels whereas myelinated fibers express high levels of NRG1 type III. Sensory neurons from NRG1 type III deficient mice are poorly ensheathed and fail to myelinate; lentiviral-mediated expression of NRG1 type III rescues these defects. Expression also converts the normally unmyelinated axons of sympathetic neurons to myelination. Nerve fibers of mice haploinsufficient for NRG1 type III are disproportionately unmyelinated, aberrantly ensheathed, and hypomyelinated, with reduced conduction velocities. Type III is the sole NRG1 isoform retained at the axon surface and activates PI 3-kinase, which is required for Schwann cell myelination. These results indicate that levels of NRG1 type III, independent of axon diameter, provide a key instructive signal that determines the ensheathment fate of axons
PMCID:2387056
PMID: 16129398
ISSN: 0896-6273
CID: 58738
Rho kinase regulates schwann cell myelination and formation of associated axonal domains
Melendez-Vasquez, Carmen V; Einheber, Steven; Salzer, James L
The myelin sheath forms by the spiral wrapping of a glial membrane around an axon. The mechanisms involved are poorly understood but are likely to involve coordinated changes in the glial cell cytoskeleton. Because of its key role as a regulator of the cytoskeleton, we investigated the role of Rho kinase (ROCK), a major downstream effector of Rho, in Schwann cell morphology, differentiation, and myelination. Pharmacologic inhibition of ROCK activity results in loss of microvilli and stress fibers in Schwann cell cultures and strikingly aberrant myelination in Schwann cell-neuron cocultures; there was no effect on Schwann cell proliferation or differentiation. Treated Schwann cells branch aberrantly and form multiple, small, independent myelin segments along the length of axons, each with associated nodes and paranodes. This organization partially resembles myelin formed by oligodendrocytes rather than the single long myelin sheath characteristic of Schwann cells. ROCK regulates myosin light chain phosphorylation, which is robustly, but transiently, activated at the onset of myelination. These results support a key role of Rho through its effector ROCK in coordinating the movement of the glial membrane around the axon at the onset of myelination via regulation of myosin phosphorylation and actomyosin assembly. They also indicate that the molecular machinery that promotes the wrapping of the glial membrane sheath around the axon is distributed along the entire length of the internode
PMID: 15102911
ISSN: 1529-2401
CID: 42681
Caspr regulates the processing of contactin and inhibits its binding to neurofascin
Gollan, Leora; Salomon, Daniela; Salzer, James L; Peles, Elior
Three cell adhesion molecules are present at the axoglial junctions that form between the axon and myelinating glia on either side of nodes of Ranvier. These include an axonal complex of contacin-associated protein (Caspr) and contactin, which was proposed to bind NF155, an isoform of neurofascin located on the glial paranodal loops. Here, we show that NF155 binds directly to contactin and that surprisingly, coexpression of Caspr inhibits this interaction. This inhibition reflects the association of Caspr with contactin during biosynthesis and the resulting expression of a low molecular weight (LMw), endoglycosidase H-sensitive isoform of contactin at the cell membrane, which remains associated with Caspr but is unable to bind NF155. Accordingly, deletion of Caspr in mice by gene targeting results in a shift from the LMw- to a HMw-contactin glycoform. These results demonstrate that Caspr regulates the intracellular processing and transport of contactin to the cell surface, thereby affecting its ability to interact with other cell adhesion molecules
PMCID:2173730
PMID: 14676309
ISSN: 0021-9525
CID: 44993