Searched for: in-biosketch:yes
person:staplk01
Inhibition of mTORC1 Enhances the Translation of Chikungunya Proteins via the Activation of the MnK/eIF4E Pathway
Joubert, Pierre-Emmanuel; Stapleford, Kenneth; Guivel-Benhassine, Florence; Vignuzzi, Marco; Schwartz, Olivier; Albert, Matthew L
Chikungunya virus (CHIKV), the causative agent of a major epidemic spanning five continents, is a positive stranded mRNA virus that replicates using the cell's cap-dependent translation machinery. Despite viral infection inhibiting mTOR, a metabolic sensor controls cap-dependent translation, viral proteins are efficiently translated. Rapalog treatment, silencing of mtor or raptor genes, but not rictor, further enhanced CHIKV infection in culture cells. Using biochemical assays and real time imaging, we demonstrate that this effect is independent of autophagy or type I interferon production. Providing in vivo evidence for the relevance of our findings, mice treated with mTORC1 inhibitors exhibited increased lethality and showed a higher sensitivity to CHIKV. A systematic evaluation of the viral life cycle indicated that inhibition of mTORC1 has a specific positive effect on viral proteins, enhancing viral replication by increasing the translation of both structural and nonstructural proteins. Molecular analysis defined a role for phosphatidylinositol-3 kinase (PI3K) and MAP kinase-activated protein kinase (MnKs) activation, leading to the hyper-phosphorylation of eIF4E. Finally, we demonstrated that in the context of CHIKV inhibition of mTORC1, viral replication is prioritized over host translation via a similar mechanism. Our study reveals an unexpected bypass pathway by which CHIKV protein translation overcomes viral induced mTORC1 inhibition.
PMCID:4552638
PMID: 26317997
ISSN: 1553-7374
CID: 2162322
Emergence and transmission of arbovirus evolutionary intermediates with epidemic potential
Stapleford, Kenneth A; Coffey, Lark L; Lay, Sreyrath; Borderia, Antonio V; Duong, Veasna; Isakov, Ofer; Rozen-Gagnon, Kathryn; Arias-Goeta, Camilo; Blanc, Herve; Beaucourt, Stephanie; Haliloglu, Turkan; Schmitt, Christine; Bonne, Isabelle; Ben-Tal, Nir; Shomron, Noam; Failloux, Anna-Bella; Buchy, Philippe; Vignuzzi, Marco
The high replication and mutation rates of RNA viruses can result in the emergence of new epidemic variants. Thus, the ability to follow host-specific evolutionary trajectories of viruses is essential to predict and prevent epidemics. By studying the spatial and temporal evolution of chikungunya virus during natural transmission between mosquitoes and mammals, we have identified viral evolutionary intermediates prior to emergence. Analysis of virus populations at anatomical barriers revealed that the mosquito midgut and salivary gland pose population bottlenecks. By focusing on virus subpopulations in the saliva of multiple mosquito strains, we recapitulated the emergence of a recent epidemic strain of chikungunya and identified E1 glycoprotein mutations with potential to emerge in the future. These mutations confer fitness advantages in mosquito and mammalian hosts by altering virion stability and fusogenic activity. Thus, virus evolutionary trajectories can be predicted and studied in the short term before new variants displace currently circulating strains.
PMID: 24922573
ISSN: 1934-6069
CID: 2162232
Alphavirus mutator variants present host-specific defects and attenuation in mammalian and insect models
Rozen-Gagnon, Kathryn; Stapleford, Kenneth A; Mongelli, Vanesa; Blanc, Herve; Failloux, Anna-Bella; Saleh, Maria-Carla; Vignuzzi, Marco
Arboviruses cycle through both vertebrates and invertebrates, which requires them to adapt to disparate hosts while maintaining genetic integrity during genome replication. To study the genetic mechanisms and determinants of these processes, we use chikungunya virus (CHIKV), a re-emerging human pathogen transmitted by the Aedes mosquito. We previously isolated a high fidelity (or antimutator) polymerase variant, C483Y, which had decreased fitness in both mammalian and mosquito hosts, suggesting this residue may be a key molecular determinant. To further investigate effects of position 483 on RNA-dependent RNA-polymerase (RdRp) fidelity, we substituted every amino acid at this position. We isolated novel mutators with decreased replication fidelity and higher mutation frequencies, allowing us to examine the fitness of error-prone arbovirus variants. Although CHIKV mutators displayed no major replication defects in mammalian cell culture, they had reduced specific infectivity and were attenuated in vivo. Unexpectedly, mutator phenotypes were suppressed in mosquito cells and the variants exhibited significant defects in RNA synthesis. Consequently, these replication defects resulted in strong selection for reversion during infection of mosquitoes. Since residue 483 is conserved among alphaviruses, we examined the analogous mutations in Sindbis virus (SINV), which also reduced polymerase fidelity and generated replication defects in mosquito cells. However, replication defects were mosquito cell-specific and were not observed in Drosophila S2 cells, allowing us to evaluate the potential attenuation of mutators in insect models where pressure for reversion was absent. Indeed, the SINV mutator variant was attenuated in fruit flies. These findings confirm that residue 483 is a determinant regulating alphavirus polymerase fidelity and demonstrate proof of principle that arboviruses can be attenuated in mammalian and insect hosts by reducing fidelity.
PMCID:3894214
PMID: 24453971
ISSN: 1553-7374
CID: 2162242
RNA virus population diversity: implications for inter-species transmission
Borderia, Antonio V; Stapleford, Kenneth A; Vignuzzi, Marco
RNA viruses are notorious for rapidly generating genetically diverse populations during a single replication cycle, and the implications of this mutant population, often referred to as quasispecies, can be vast. Previous studies have linked RNA virus genetic variability to changes in viral pathogenesis, the ability to adapt to a host during infection, and to the acquisition of mechanisms required to switch hosts entirely. However, these initial studies are just the beginning. With the development of next generation technologies, groups will be able to dig deeper into the sequence space that is generated during an RNA virus infection and more clearly understand the development, role, and consequences of viral genetic diversity.
PMID: 22440922
ISSN: 1879-6265
CID: 2162252
Hepatitis C virus NS2 coordinates virus particle assembly through physical interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes
Stapleford, Kenneth A; Lindenbach, Brett D
The hepatitis C virus (HCV) NS2 protein is essential for particle assembly, but its function in this process is unknown. We previously identified critical genetic interactions between NS2 and the viral E1-E2 glycoprotein and NS3-NS4A enzyme complexes. Based on these data, we hypothesized that interactions between these viral proteins are essential for HCV particle assembly. To identify interaction partners of NS2, we developed methods to site-specifically biotinylate NS2 in vivo and affinity capture NS2-containing protein complexes from virus-producing cells with streptavidin magnetic beads. By using these methods, we confirmed that NS2 physically interacts with E1, E2, and NS3 but did not stably interact with viral core or NS5A proteins. We further characterized these protein complexes by blue native polyacrylamide gel electrophoresis and identified approximately 520-kDa and approximately 680-kDa complexes containing E2, NS2, and NS3. The formation of NS2 protein complexes was dependent on coexpression of the viral p7 protein and enhanced by cotranslation of viral proteins as a polyprotein. Further characterization indicated that the glycoprotein complex interacts with NS2 via E2, and the pattern of N-linked glycosylation on E1 and E2 suggested that these interactions occur in the early secretory pathway. Importantly, several mutations that inhibited virus assembly were shown to inhibit NS2 protein complex formation, and NS2 was essential for mediating the interaction between E2 and NS3. These studies demonstrate that NS2 plays a central organizing role in HCV particle assembly by bringing together viral structural and nonstructural proteins.
PMCID:3028914
PMID: 21147927
ISSN: 1098-5514
CID: 2162262
Role of cellular lipids in positive-sense RNA virus replication complex assembly and function
Stapleford, Kenneth A; Miller, David J
Positive-sense RNA viruses are responsible for frequent and often devastating diseases in humans, animals, and plants. However, the development of effective vaccines and anti-viral therapies targeted towards these pathogens has been hindered by an incomplete understanding of the molecular mechanisms involved in viral replication. One common feature of all positive-sense RNA viruses is the manipulation of host intracellular membranes for the assembly of functional viral RNA replication complexes. This review will discuss the interplay between cellular membranes and positive-sense RNA virus replication, and will focus specifically on the potential structural and functional roles for cellular lipids in this process.
PMCID:3187604
PMID: 21994671
ISSN: 1999-4915
CID: 2162272
Complementary transcriptomic, lipidomic, and targeted functional genetic analyses in cultured Drosophila cells highlight the role of glycerophospholipid metabolism in Flock House virus RNA replication
Castorena, Kathryn M; Stapleford, Kenneth A; Miller, David J
BACKGROUND: Cellular membranes are crucial host components utilized by positive-strand RNA viruses for replication of their genomes. Published studies have suggested that the synthesis and distribution of membrane lipids are particularly important for the assembly and function of positive-strand RNA virus replication complexes. However, the impact of specific lipid metabolism pathways in this process have not been well defined, nor have potential changes in lipid expression associated with positive-strand RNA virus replication been examined in detail. RESULTS: In this study we used parallel and complementary global and targeted approaches to examine the impact of lipid metabolism on the replication of the well-studied model alphanodavirus Flock House virus (FHV). We found that FHV RNA replication in cultured Drosophila S2 cells stimulated the transcriptional upregulation of several lipid metabolism genes, and was also associated with increased phosphatidylcholine accumulation with preferential increases in lipid molecules with longer and unsaturated acyl chains. Furthermore, targeted RNA interference-mediated downregulation of candidate glycerophospholipid metabolism genes revealed a functional role of several genes in virus replication. In particular, we found that downregulation of Cct1 or Cct2, which encode essential enzymes for phosphatidylcholine biosynthesis, suppressed FHV RNA replication. CONCLUSION: These results indicate that glycerophospholipid metabolism, and in particular phosphatidylcholine biosynthesis, plays an important role in FHV RNA replication. Furthermore, they provide a framework in which to further explore the impact of specific steps in lipid metabolism on FHV replication, and potentially identify novel cellular targets for the development of drugs to inhibit positive-strand RNA viruses.
PMCID:2847973
PMID: 20236518
ISSN: 1471-2164
CID: 2162192
Mitochondrion-enriched anionic phospholipids facilitate flock house virus RNA polymerase membrane association
Stapleford, Kenneth A; Rapaport, Doron; Miller, David J
One characteristic of all positive-strand RNA viruses is the necessity to assemble viral RNA replication complexes on host intracellular membranes, a process whose molecular details are poorly understood. To study viral replication complex assembly we use the established model system of Flock House virus (FHV), which assembles its replication complexes on the mitochondrial outer membrane. The FHV RNA-dependent RNA polymerase, protein A, is the only viral protein necessary for genome replication in the budding yeast Saccharomyces cerevisiae. To examine the host components involved in protein A-membrane interactions, an initial step of FHV RNA replication complex assembly, we established an in vitro protein A membrane association assay. Protein A translated in vitro rapidly and specifically associated with mitochondria isolated from yeast, insect, and mammalian cells. This process was temperature dependent but independent of protease-sensitive mitochondrial outer membrane components or the host mitochondrial import machinery. Furthermore, lipid-binding studies revealed that protein A preferentially bound to specific anionic phospholipids, in particular the mitochondrion-specific phospholipid cardiolipin. These studies implicate membrane phospholipids as important host determinants for FHV RNA polymerase membrane association and provide evidence for the involvement of host phospholipids in positive-strand RNA virus membrane-specific targeting.
PMCID:2668453
PMID: 19244330
ISSN: 1098-5514
CID: 2162282
A functional heat shock protein 90 chaperone is essential for efficient flock house virus RNA polymerase synthesis in Drosophila cells
Castorena, Kathryn M; Weeks, Spencer A; Stapleford, Kenneth A; Cadwallader, Amy M; Miller, David J
The molecular chaperone heat shock protein 90 (Hsp90) is involved in multiple cellular processes including protein maturation, complex assembly and disassembly, and intracellular transport. We have recently shown that a disruption of Hsp90 activity in cultured Drosophila melanogaster cells suppresses Flock House virus (FHV) replication and the accumulation of protein A, the FHV RNA-dependent RNA polymerase. In the present study, we investigated whether the defect in FHV RNA polymerase accumulation induced by Hsp90 suppression was secondary to an effect on protein A synthesis, degradation, or intracellular membrane association. Treatment with the Hsp90-specific inhibitor geldanamycin selectively reduced FHV RNA polymerase synthesis by 80% in Drosophila S2 cells stably transfected with an inducible protein A expression plasmid. The suppressive effect of geldanamycin on protein A synthesis was not attenuated by proteasome inhibition, nor was it sensitive to changes in either the mRNA untranslated regions or protein A intracellular membrane localization. Furthermore, geldanamycin did not promote premature protein A degradation, nor did it alter the extremely rapid kinetics of protein A membrane association. These results identify a novel role for Hsp90 in facilitating viral RNA polymerase synthesis in Drosophila cells and suggest that FHV subverts normal cellular pathways to assemble functional replication complexes.
PMCID:1951356
PMID: 17522196
ISSN: 0022-538x
CID: 2162292
P53 inhibits strand exchange and replication fork regression promoted by human Rad51
Yoon, Dennis; Wang, Yuzhen; Stapleford, Kenneth; Wiesmuller, Lisa; Chen, Junghuei
We explore the effects of p53 on strand exchange as well as regression of stalled replication forks promoted by human Rad51. We have found that p53 specifically inhibits strand exchange mediated by human Rad51, but not by Escherichia coli RecA. In addition, we provide in vitro evidence that human Rad51 can promote regression of a stalled replication fork, and p53 also inhibits this fork regression. Furthermore, we show that two cancer-related p53 mutant proteins cannot inhibit strand exchange and fork regression catalyzed by human Rad51. The results establish a direct functional link between p53 and human Rad51, and reveal that one of p53's functions in genome stabilization may be to prevent detrimental genome rearrangements promoted by human Rad51. Thus, the results support the hypothesis that p53 contributes to genome stability by a transcription-independent modulation of homologous recombination.
PMID: 15095978
ISSN: 0022-2836
CID: 2162312