Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:stoked01

Total Results:

107


An automated pipeline to screen membrane protein 2D crystallization

Kim, Changki; Vink, Martin; Hu, Minghui; Love, James; Stokes, David L; Ubarretxena-Belandia, Iban
Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein-lipid-detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility
PMCID:3128831
PMID: 20349145
ISSN: 1570-0267
CID: 133797

Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles

Tucker, Jaimey D; Siebert, C Alistair; Escalante, Maryana; Adams, Peter G; Olsen, John D; Otto, Cees; Stokes, David L; Hunter, C Neil
The purple phototrophic bacteria synthesize an extensive system of intracytoplasmic membranes (ICM) in order to increase the surface area for absorbing and utilizing solar energy. Rhodobacter sphaeroides cells contain curved membrane invaginations. In order to study the biogenesis of ICM in this bacterium mature (ICM) and precursor (upper pigmented band - UPB) membranes were purified and compared at the single membrane level using electron, atomic force and fluorescence microscopy, revealing fundamental differences in their morphology, protein organization and function. Cryo-electron tomography demonstrates the complexity of the ICM of Rba. sphaeroides. Some ICM vesicles have no connection with other structures, others are found nearer to the cytoplasmic membrane (CM), often forming interconnected structures that retain a connection to the CM, and possibly having access to the periplasmic space. Near-spherical single invaginations are also observed, still attached to the CM by a 'neck'. Small indents of the CM are also seen, which are proposed to give rise to the UPB precursor membranes upon cell disruption. 'Free-living' ICM vesicles, which possess all the machinery for converting light energy into ATP, can be regarded as bacterial membrane organelles.
PMID: 20444085
ISSN: 1365-2958
CID: 3890422

Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo

Li, Guohong; Margueron, Raphael; Hu, Guobin; Stokes, David; Wang, Yuh-Hwa; Reinberg, Danny
High-order chromatin was reconstituted in vitro. This species reflects the criteria associated with transcriptional regulation in vivo. Histone H1 was determinant to formation of condensed structures, with deacetylated histones giving rise to highly compacted chromatin that approximated 30 nm fibers as evidenced by electron microscopy. Using the PEPCK promoter, we validated the integrity of these templates that were refractory to transcription by attaining transcription through the progressive action of the pertinent factors. The retinoic acid receptor binds to highly compacted chromatin, but the NF1 transcription factor binds only after histone acetylation by p300 and SWI/SNF-mediated nucleosome mobilization, reflecting the in vivo case. Mapping studies revealed the same pattern of nucleosomal repositioning on the PEPCK promoter in vitro and in vivo, correlating with NF1 binding and transcription. The reconstitution of such highly compacted '30 nm' chromatin that mimics in vivo characteristics should advance studies of its conversion to a transcriptionally active form
PMCID:3641559
PMID: 20385088
ISSN: 1097-4164
CID: 121297

A Functional, Pentameric Form of Phospholamban Is Required For Two-Dimensional Crystallization With the Sarcoplasmic Reticulum Calcium Pump [Meeting Abstract]

Glaves, John Paul J; Trieber, Catharine A; Stokes, David L; Young, Howard S
ISI:000208762000246
ISSN: 0006-3495
CID: 2444752

Two-dimensional crystallization of integral membrane proteins for electron crystallography

Stokes, David L; Rice, William J; Hu, Minghui; Kim, Changki; Ubarretxena-Belandia, Iban
Although membrane proteins make up 30% of the proteome and are a common target for therapeutic drugs, determination of their atomic structure remains a technical challenge. Electron crystallography represents an alternative to the conventional methods of X-ray diffraction and NMR and relies on the formation of two-dimensional crystals. These crystals are produced by reconstituting purified, detergent-solubilized membrane proteins back into the native environment of a lipid bilayer. This chapter reviews methods for producing two-dimensional crystals and for screening them by negative stain electron microscopy. In addition, we show examples of the different morphologies that are commonly obtained and describe basic image analysis procedures that can be used to evaluate their promise for structure determination by cryoelectron microscopy
PMCID:3128833
PMID: 20665267
ISSN: 1940-6029
CID: 111367

Fourier-Bessel reconstruction of helical assemblies

Diaz, Ruben; Rice, William J; Stokes, David L
Helical symmetry is commonly used for building macromolecular assemblies. Helical symmetry is naturally present in viruses and cytoskeletal filaments and also occurs during crystallization of isolated proteins, such as Ca-ATPase and the nicotinic acetyl choline receptor. Structure determination of helical assemblies by electron microscopy has a long history dating back to the original work on three-dimensional (3D) reconstruction. A helix offers distinct advantages for structure determination. Not only can one improve resolution by averaging across the constituent subunits, but each helical assembly provides multiple views of these subunits and thus provides a complete 3D data set. This review focuses on Fourier methods of helical reconstruction, covering the theoretical background, a step-by-step guide to the process, and a practical example based on previous work with Ca-ATPase. Given recent results from helical reconstructions at atomic resolution and the development of graphical user interfaces to aid in the process, these methods are likely to continue to make an important contribution to the field of structural biology
PMCID:3128834
PMID: 20888960
ISSN: 1557-7988
CID: 134412

Present and future of membrane protein structure determination by electron crystallography

Ubarretxena-Belandia, Iban; Stokes, David L
Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This chapter describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins.
PMCID:3121533
PMID: 21115172
ISSN: 1876-1631
CID: 3777922

Three-dimensional structure of the enveloped bacteriophage phi12: an incomplete T = 13 lattice is superposed on an enclosed T = 1 shell

Wei, Hui; Cheng, R Holland; Berriman, John; Rice, William J; Stokes, David L; Katz, A; Morgan, David Gene; Gottlieb, Paul
BACKGROUND: Bacteriophage phi12 is a member of the Cystoviridae, a unique group of lipid containing membrane enveloped bacteriophages that infect the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola. The genomes of the virus species contain three double-stranded (dsRNA) segments, and the virus capsid itself is organized in multiple protein shells. The segmented dsRNA genome, the multi-layered arrangement of the capsid and the overall viral replication scheme make the Cystoviridae similar to the Reoviridae. METHODOLOGY/PRINCIPAL FINDINGS: We present structural studies of cystovirus phi12 obtained using cryo-electron microscopy and image processing techniques. We have collected images of isolated phi12 virions and generated reconstructions of both the entire particles and the polymerase complex (PC). We find that in the nucleocapsid (NC), the phi12 P8 protein is organized on an incomplete T = 13 icosahedral lattice where the symmetry axes of the T = 13 layer and the enclosed T = 1 layer of the PC superpose. This is the same general protein-component organization found in phi6 NC's but the detailed structure of the entire phi12 P8 layer is distinct from that found in the best classified cystovirus species phi6. In the reconstruction of the NC, the P8 layer includes protein density surrounding the hexamers of P4 that sit at the 5-fold vertices of the icosahedral lattice. We believe these novel features correspond to dimers of protein P7. CONCLUSIONS/SIGNIFICANCE: In conclusion, we have determined that the phi12 NC surface is composed of an incomplete T = 13 P8 layer forming a net-like configuration. The significance of this finding in regard to cystovirus assembly is that vacancies in the lattice could have the potential to accommodate additional viral proteins that are required for RNA packaging and synthesis
PMCID:2733035
PMID: 19727406
ISSN: 1932-6203
CID: 105216

Distinct effects of tafazzin deletion in differentiated and undifferentiated mitochondria

Acehan, Devrim; Khuchua, Zaza; Houtkooper, Riekelt H; Malhotra, Ashim; Kaufman, Johanna; Vaz, Frederic M; Ren, Mindong; Rockman, Howard A; Stokes, David L; Schlame, Michael
Tafazzin is a conserved mitochondrial protein that is required to maintain normal content and composition of cardiolipin. We used electron tomography to investigate the effect of tafazzin deletion on mitochondrial structure and found that cellular differentiation plays a crucial role in the manifestation of abnormalities. This conclusion was reached by comparing differentiated cardiomyocytes with embryonic stem cells from mouse and by comparing different tissues from Drosophila melanogaster. The data suggest that tafazzin deficiency affects cardiolipin in all mitochondria, but significant alterations of the ultrastructure, such as remodeling and aggregation of inner membranes, will only occur after specific differentiation
PMCID:2660382
PMID: 19114128
ISSN: 1567-7249
CID: 94434

Biodiversity conservation in local planning

Miller, James R; Groom, Martha; Hess, George R; Steelman, Toddi; Stokes, David L; Thompson, Jan; Bowman, Troy; Fricke, Laura; King, Brandon; Marquardt, Ryan
Local land-use policy is increasingly being recognized as fundamental to biodiversity conservation in the United States. Many planners and conservation scientists have called for broader use of planning and regulatory tools to support the conservation of biodiversity at local scales. Yet little is known about the pervasiveness of these practices. We conducted an on-line survey of county, municipal, and tribal planning directors (n =116) in 3 geographic regions of the United States: metropolitan Seattle, Washington; metropolitan Des Moines, Iowa; and the Research Triangle, North Carolina. Our objectives were to gauge the extent to which local planning departments address biodiversity conservation and to identify factors that facilitate or hinder conservation actions in local planning. We found that biodiversity conservation was seldom a major consideration in these departments. Staff time was mainly devoted to development mandates and little time was spent on biodiversity conservation. Regulations requiring conservation actions that might benefit biodiversity were uncommon, with the exception of rules governing water quality in all 3 regions and the protection of threatened and endangered species in the Seattle region. Planning tools that could enhance habitat conservation were used infrequently. Collaboration across jurisdictions was widespread, but rarely focused on conservation. Departments with a conservation specialist on staff tended to be associated with higher levels of conservation actions. Jurisdictions in the Seattle region also reported higher levels of conservation action, largely driven by state and federal mandates. Increased funding was most frequently cited as a factor that would facilitate greater consideration of biodiversity in local planning. There are numerous opportunities for conservation biologists to play a role in improving conservation planning at local scales
PMID: 19016822
ISSN: 1523-1739
CID: 94875