Searched for: in-biosketch:yes
person:veraaj01
In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy
Jelescu, Ileana O; Zurek, Magdalena; Winters, Kerryanne V; Veraart, Jelle; Rajaratnam, Anjali; Kim, Nathanael S; Babb, James S; Shepherd, Timothy M; Novikov, Dmitry S; Kim, Sungheon G; Fieremans, Els
There is a need for accurate quantitative non-invasive biomarkers to monitor myelin pathology in vivo and distinguish myelin changes from other pathological features including inflammation and axonal loss. Conventional MRI metrics such as T2, magnetization transfer ratio and radial diffusivity have proven sensitivity but not specificity. In highly coherent white matter bundles, compartment-specific white matter tract integrity (WMTI) metrics can be directly derived from the diffusion and kurtosis tensors: axonal water fraction, intra-axonal diffusivity, and extra-axonal radial and axial diffusivities. We evaluate the potential of WMTI to quantify demyelination by monitoring the effects of both acute (6weeks) and chronic (12weeks) cuprizone intoxication and subsequent recovery in the mouse corpus callosum, and compare its performance with that of conventional metrics (T2, magnetization transfer, and DTI parameters). The changes observed in vivo correlated with those obtained from quantitative electron microscopy image analysis. A 6-week intoxication produced a significant decrease in axonal water fraction (p<0.001), with only mild changes in extra-axonal radial diffusivity, consistent with patchy demyelination, while a 12-week intoxication caused a more marked decrease in extra-axonal radial diffusivity (p=0.0135), consistent with more severe demyelination and clearance of the extra-axonal space. Results thus revealed increased specificity of the axonal water fraction and extra-axonal radial diffusivity parameters to different degrees and patterns of demyelination. The specificities of these parameters were corroborated by their respective correlations with microstructural features: the axonal water fraction correlated significantly with the electron microscopy derived total axonal water fraction (rho=0.66; p=0.0014) but not with the g-ratio, while the extra-axonal radial diffusivity correlated with the g-ratio (rho=0.48; p=0.0342) but not with the electron microscopy derived axonal water fraction. These parameters represent promising candidates as clinically feasible biomarkers of demyelination and remyelination in the white matter.
PMCID:4851889
PMID: 26876473
ISSN: 1095-9572
CID: 1949552
In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter
Fieremans, Els; Burcaw, Lauren M; Lee, Hong-Hsi; Lemberskiy, Gregory; Veraart, Jelle; Novikov, Dmitry S
The presence of micrometer-level restrictions leads to a decrease of diffusion coefficient with diffusion time. Here we investigate this effect in human white matter in vivo. We focus on a broad range of diffusion times, up to 600 ms, covering diffusion length scales up to about 30 mum. We perform stimulated echo diffusion tensor imaging on 5 healthy volunteers and observe a relatively weak time-dependence in diffusion transverse to major fiber tracts. Remarkably, we also find notable time-dependence in the longitudinal direction. Comparing models of diffusion in ordered, confined and disordered media, we argue that the time-dependence in both directions can arise due to structural disorder, such as axonal beads in the longitudinal direction, and the random packing geometry of fibers within a bundle in the transverse direction. These time-dependent effects extend beyond a simple picture of Gaussian compartments, and may lead to novel markers that are specific to neuronal fiber geometry at the micrometer scale.
PMCID:4803645
PMID: 26804782
ISSN: 1095-9572
CID: 1929552
Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination
Guglielmetti, C; Veraart, J; Roelant, E; Mai, Z; Daans, J; Van Audekerke, J; Naeyaert, M; Vanhoutte, G; Delgado Y Palacios, R; Praet, J; Fieremans, E; Ponsaerts, P; Sijbers, J; Van der Linden, A; Verhoye, M
Although MRI is the gold standard for the diagnosis and monitoring of multiple sclerosis (MS), current conventional MRI techniques often fail to detect cortical alterations and provide little information about gliosis, axonal damage and myelin status of lesioned areas. Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) provide sensitive and complementary measures of the neural tissue microstructure. Additionally, specific white matter tract integrity (WMTI) metrics modelling the diffusion in white matter were recently derived. In the current study we used the well-characterized cuprizone mouse model of central nervous system demyelination to assess the temporal evolution of diffusion tensor (DT), diffusion kurtosis tensor (DK) and WMTI-derived metrics following acute inflammatory demyelination and spontaneous remyelination. While DT-derived metrics were unable to detect cuprizone induced cortical alterations, the mean kurtosis (MK) and radial kurtosis (RK) were found decreased under cuprizone administration, as compared to age-matched controls, in both the motor and somatosensory cortices. The MK remained decreased in the motor cortices at the end of the recovery period, reflecting long lasting impairment of myelination. In white matter, DT, DK and WMTI-derived metrics enabled the detection of cuprizone induced changes differentially according to the stage and the severity of the lesion. More specifically, the MK, the RK and the axonal water fraction (AWF) were the most sensitive for the detection of cuprizone induced changes in the genu of the corpus callosum, a region less affected by cuprizone administration. Additionally, microgliosis was associated with an increase of MK and RK during the acute inflammatory demyelination phase. In regions undergoing severe demyelination, namely the body and splenium of the corpus callosum, DT-derived metrics, notably the mean diffusion (MD) and radial diffusion (RD), were among the best discriminators between cuprizone and control groups, hence highlighting their ability to detect both acute and long lasting changes. Interestingly, WMTI-derived metrics showed the aptitude to distinguish between the different stages of the disease. Both the intra-axonal diffusivity (Da) and the AWF were found to be decreased in the cuprizone treated group, Da specifically decreased during the acute inflammatory demyelinating phase whereas the AWF decrease was associated to the spontaneous remyelination and the recovery period. Altogether our results demonstrate that DKI is sensitive to alterations of cortical areas and provides, along with WMTI metrics, information that is complementary to DT-derived metrics for the characterization of demyelination in both white and grey matter and subsequent inflammatory processes associated with a demyelinating event.
PMCID:4935929
PMID: 26525654
ISSN: 1095-9572
CID: 1825772
Initializing Nonnegative Matrix Factorization using the Successive Projection Algorithm for multi-parametric medical image segmentation
Chapter by: Sauwen, N.; Acou, M.; Bharath, H. N.; Sima, D.; Veraart, J.; Maes, F.; Himmelreich, U.; Achten, E.; Van Huffel, S.
in: ESANN 2016 - 24th European Symposium on Artificial Neural Networks by
[S.l.] : i6doc.com publication, 2016
pp. 265-270
ISBN: 9782875870278
CID: 4214742
Diffusion kurtosis imaging
Chapter by: Veraart, Jelle; Sijbers, Jan
in: Diffusion Tensor Imaging: A Practical Handbook by
[S.l.] : Springer New York, 2016
pp. 407-418
ISBN: 9781493931170
CID: 4214752
Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations
Van Steenkiste, Gwendolyn; Jeurissen, Ben; Veraart, Jelle; den Dekker, Arnold J; Parizel, Paul M; Poot, Dirk H J; Sijbers, Jan
PURPOSE/OBJECTIVE:Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal-to-noise ratio. Recently, methods have been proposed to improve the trade-off between spatial resolution, signal-to-noise ratio, and acquisition time of diffusion-weighted images via super-resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q-space relation between the different diffusion-weighted images. METHOD/METHODS:An SRR method that includes a diffusion model and directly reconstructs high resolution diffusion parameters from a set of low resolution diffusion-weighted images was proposed. Our method allows an arbitrary combination of diffusion gradient directions and slice orientations for the low resolution diffusion-weighted images, optimally samples the q- and k-space, and performs motion correction with b-matrix rotation. RESULTS:Experiments with synthetic data and in vivo human brain data show an increase of spatial resolution of the diffusion parameters, while preserving a high signal-to-noise ratio and low scan time. Moreover, the proposed SRR method outperforms the previous methods in terms of the root-mean-square error. CONCLUSION/CONCLUSIONS:The proposed SRR method substantially increases the spatial resolution of MRI that can be obtained in a clinically feasible scan time.
PMID: 25613283
ISSN: 1522-2594
CID: 4214522
Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue
Jelescu, Ileana O; Veraart, Jelle; Fieremans, Els; Novikov, Dmitry S
The ultimate promise of diffusion MRI (dMRI) models is specificity to neuronal microstructure, which may lead to distinct clinical biomarkers using noninvasive imaging. While multi-compartment models are a common approach to interpret water diffusion in the brain in vivo, the estimation of their parameters from the dMRI signal remains an unresolved problem. Practically, even when q space is highly oversampled, nonlinear fit outputs suffer from heavy bias and poor precision. So far, this has been alleviated by fixing some of the model parameters to a priori values, for improved precision at the expense of accuracy. Here we use a representative two-compartment model to show that fitting fails to determine the five model parameters from over 60 measurement points. For the first time, we identify the reasons for this poor performance. The first reason is the existence of two local minima in the parameter space for the objective function of the fitting procedure. These minima correspond to qualitatively different sets of parameters, yet they both lie within biophysically plausible ranges. We show that, at realistic signal-to-noise ratio values, choosing between the two minima based on the associated objective function values is essentially impossible. Second, there is an ensemble of very low objective function values around each of these minima in the form of a pipe. The existence of such a direction in parameter space, along which the objective function profile is very flat, explains the bias and large uncertainty in parameter estimation, and the spurious parameter correlations: in the presence of noise, the minimum can be randomly displaced by a very large amount along each pipe. Our results suggest that the biophysical interpretation of dMRI model parameters crucially depends on establishing which of the minima is closer to the biophysical reality and the size of the uncertainty associated with each parameter
PMCID:4920129
PMID: 26615981
ISSN: 1099-1492
CID: 1863192
Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI
Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S
Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.
PMCID:5079350
PMID: 27812502
ISSN: 2213-1582
CID: 4214602
Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI
Sauwen, Nicolas; Sima, Diana M; Van Cauter, Sofie; Veraart, Jelle; Leemans, Alexander; Maes, Frederik; Himmelreich, Uwe; Van Huffel, Sabine
Tissue characterization in brain tumors and, in particular, in high-grade gliomas is challenging as a result of the co-existence of several intra-tumoral tissue types within the same region and the high spatial heterogeneity. This study presents a method for the detection of the relevant tumor substructures (i.e. viable tumor, necrosis and edema), which could be of added value for the diagnosis, treatment planning and follow-up of individual patients. Twenty-four patients with glioma [10 low-grade gliomas (LGGs), 14 high-grade gliomas (HGGs)] underwent a multi-parametric MRI (MP-MRI) scheme, including conventional MRI (cMRI), perfusion-weighted imaging (PWI), diffusion kurtosis imaging (DKI) and short-TE (1)H MRSI. MP-MRI parameters were derived: T2, T1 + contrast, fluid-attenuated inversion recovery (FLAIR), relative cerebral blood volume (rCBV), mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK) and the principal metabolites lipids (Lip), lactate (Lac), N-acetyl-aspartate (NAA), total choline (Cho), etc. Hierarchical non-negative matrix factorization (hNMF) was applied to the MP-MRI parameters, providing tissue characterization on a patient-by-patient and voxel-by-voxel basis. Tissue-specific patterns were obtained and the spatial distribution of each tissue type was visualized by means of abundance maps. Dice scores were calculated by comparing tissue segmentation derived from hNMF with the manual segmentation by a radiologist. Correlation coefficients were calculated between each pathologic tissue source and the average feature vector within the corresponding tissue region. For the patients with HGG, mean Dice scores of 78%, 85% and 83% were obtained for viable tumor, the tumor core and the complete tumor region. The mean correlation coefficients were 0.91 for tumor, 0.97 for necrosis and 0.96 for edema. For the patients with LGG, a mean Dice score of 85% and mean correlation coefficient of 0.95 were found for the tumor region. hNMF was also applied to reduced MRI datasets, showing the added value of individual MRI modalities.
PMID: 26458729
ISSN: 1099-1492
CID: 4214542
Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters
Collier, Quinten; Veraart, Jelle; Jeurissen, Ben; den Dekker, Arnold J; Sijbers, Jan
PURPOSE/OBJECTIVE:Diffusion-weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE and iRESTORE (Chang et al. Magn Reson Med 2005; 53:1088-1095; Chang et al. Magn Reson Med 2012; 68:1654-1663). However, these techniques are based on nonlinear estimators and are consequently computationally intensive. METHOD/METHODS:In this work, we present a new, robust, iteratively reweighted linear least squares (IRLLS) estimator. IRLLS performs a voxel-wise identification of outliers in diffusion-weighted magnetic resonance images, where it exploits the natural skewness of the data distribution to become more sensitive to both signal hyperintensities and signal dropouts. RESULTS:Both simulations and real data experiments were conducted to compare IRLLS with other state-of-the-art techniques. While IRLLS showed no significant loss in accuracy or precision, it proved to be substantially faster than both RESTORE and iRESTORE. In addition, IRLLS proved to be even more robust when considering the overestimation of the noise level or when the signal-to-noise ratio is low. CONCLUSION/CONCLUSIONS:The substantially shortened calculation time in combination with the increased robustness and accuracy, make IRLLS a practical and reliable alternative to current state-of-the-art techniques for the robust estimation of diffusion-weighted magnetic resonance parameters.
PMID: 24986440
ISSN: 1522-2594
CID: 4214512