Searched for: in-biosketch:yes
person:alldrm01
Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression
Ginsberg, Stephen D; Alldred, Melissa J; Counts, Scott E; Cataldo, Anne M; Neve, Rachael L; Jiang, Ying; Wuu, Joanne; Chao, Moses V; Mufson, Elliott J; Nixon, Ralph A; Che, Shaoli
BACKGROUND: Endocytic dysfunction and neurotrophin signaling deficits may underlie the selective vulnerability of hippocampal neurons during the progression of Alzheimer's disease (AD), although there is little direct in vivo and biochemical evidence to support this hypothesis. METHODS: Microarray analysis of hippocampal CA1 pyramidal neurons acquired via laser capture microdissection was performed using postmortem brain tissue. Validation was achieved using real-time quantitative polymerase chain reaction and immunoblot analysis. Mechanistic studies were performed using human fibroblasts subjected to overexpression with viral vectors or knockdown via small interference RNA. RESULTS: Expression levels of genes regulating early endosomes (rab5) and late endosomes (rab7) are selectively upregulated in homogeneous populations of CA1 neurons from individuals with mild cognitive impairment and AD. The levels of these genes are selectively increased as antemortem measures of cognition decline during AD progression. Hippocampal quantitative polymerase chain reaction and immunoblot analyses confirmed increased levels of these transcripts and their respective protein products. Elevation of select rab GTPases regulating endocytosis paralleled the downregulation of genes encoding the neurotrophin receptors TrkB and TrkC. Overexpression of rab5 in cells suppressed TrkB expression, whereas knockdown of TrkB expression did not alter rab5 levels, suggesting that TrkB downregulation is a consequence of endosomal dysfunction associated with elevated rab5 levels in early AD. CONCLUSIONS: These data support the hypothesis that neuronal endosomal dysfunction is associated with preclinical AD. Increased endocytic pathway activity, driven by elevated rab GTPase expression, may result in long-term deficits in hippocampal neurotrophic signaling and represent a key pathogenic mechanism underlying AD progression
PMCID:2965820
PMID: 20655510
ISSN: 1873-2402
CID: 114169
Sex- and brain region-specific acceleration of beta-amyloidogenesis following behavioral stress in a mouse model of Alzheimer's disease
Devi, Latha; Alldred, Melissa J; Ginsberg, Stephen D; Ohno, Masuo
BACKGROUND: It is hypothesized that complex interactions between multiple environmental factors and genetic factors are implicated in sporadic Alzheimer's disease (AD); however, the underlying mechanisms are poorly understood. Importantly, recent evidence reveals that expression and activity levels of the beta-site APP cleaving enzyme 1 (BACE1), which initiates amyloid-beta (Abeta) production, are elevated in AD brains. In this study, we investigated a molecular mechanism by which sex and stress interactions may accelerate beta-amyloidogenesis and contribute to sporadic AD. RESULTS: We applied 5-day restraint stress (6 h/day) to the male and female 5XFAD transgenic mouse model of AD at the pre-pathological stage of disease, which showed little amyloid deposition under non-stressed control conditions. Exposure to the relatively brief behavioral stress increased levels of neurotoxic Abeta42 peptides, the beta-secretase-cleaved C-terminal fragment (C99) and plaque burden in the hippocampus of female 5XFAD mice but not in that of male 5XFAD mice. In contrast, significant changes in the parameters of beta-amyloidosis were not observed in the cerebral cortex of stressed male or female 5XFAD mice. We found that this sex- and brain region-specific acceleration of beta-amyloidosis was accounted for by elevations in BACE1 and APP levels in response to adverse stress. Furthermore, not only BACE1 mRNA but also phosphorylation of the translation initiation factor eIF2alpha (a proposed mediator of the post-transcriptional upregulation of BACE1) was elevated in the hippocampus of stressed female 5XFAD mice. CONCLUSIONS: Our results suggest that the higher prevalence of sporadic AD in women may be attributable to the vulnerability of female brains (especially, the hippocampus) to stressful events, which alter APP processing to favor the beta-amyloidogenesis through the transcriptional and translational upregulation of BACE1 combined with elevations in its substrate APP.
PMCID:2988063
PMID: 21059265
ISSN: 1756-6606
CID: 155560
Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway
Haskew-Layton, Renee E; Payappilly, Jimmy B; Smirnova, Natalya A; Ma, Thong C; Chan, Kelvin K; Murphy, Timothy H; Guo, Hengchang; Langley, Brett; Sultana, Rukhsana; Butterfield, D Allan; Santagata, Sandro; Alldred, Melissa J; Gazaryan, Irina G; Bell, George W; Ginsberg, Stephen D; Ratan, Rajiv R
Neurons rely on their metabolic coupling with astrocytes to combat oxidative stress. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) appears important for astrocyte-dependent neuroprotection from oxidative insults. Indeed, Nrf2 activators are effective in stroke, Parkinson disease, and Huntington disease models. However, key endogenous signals that initiate adaptive neuroprotective cascades in astrocytes, including activation of Nrf2-mediated gene expression, remain unclear. Hydrogen peroxide (H(2)O(2)) plays an important role in cell signaling and is an attractive candidate mediator of adaptive responses in astrocytes. Here we determine (i) the significance of H(2)O(2) in promoting astrocyte-dependent neuroprotection from oxidative stress, and (ii) the relevance of H(2)O(2) in inducing astrocytic Nrf2 activation. To control the duration and level of cytoplasmic H(2)O(2) production in astrocytes cocultured with neurons, we heterologously expressed the H(2)O(2)-producing enzyme Rhodotorula gracilis D-amino acid oxidase (rgDAAO) selectively in astrocytes. Exposure of rgDAAO-astrocytes to D-alanine lead to the concentration-dependent generation of H(2)O(2). Seven hours of low-level H(2)O(2) production ( approximately 3.7 nmol.min.mg protein) in astrocytes protected neurons from oxidative stress, but higher levels ( approximately 130 nmol.min.mg protein) were neurotoxic. Neuroprotection occurred without direct neuronal exposure to astrocyte-derived H(2)O(2), suggesting a mechanism specific to astrocytic intracellular signaling. Nrf2 activation mimicked the effect of astrocytic H(2)O(2) yet H(2)O(2)-induced protection was independent of Nrf2. Astrocytic protein tyrosine phosphatase inhibition also protected neurons from oxidative death, representing a plausible mechanism for H(2)O(2)-induced neuroprotection. These findings demonstrate the utility of rgDAAO for spatially and temporally controlling intracellular H(2)O(2) concentrations to uncover unique astrocyte-dependent neuroprotective mechanisms
PMCID:2951414
PMID: 20855618
ISSN: 1091-6490
CID: 135352
Microarray analysis of subtypes of pyramidal and nonpyramidal neurons from auditory cerebral cortex in schizophrenia [Meeting Abstract]
Smiley, J. F.; Chao, H. M.; Dwork, A. J.; Alldred, M. J.; Elarova, I.; Javitt, D. C.; Ginsberg, S. D.
BIOSIS:PREV201100532871
ISSN: 1558-3635
CID: 458962
Endosomal and lysosomal genes are selectively dysregulated within CA1 pyramidal neurons in mild cognitive impairment (MCI) and Alzheimer's disease (AD) [Meeting Abstract]
Ginsberg, S. D.; Alldred, M. J.; Mufson, E. J.; Counts, S. E.; Wuu, J.; Nixon, R. A.; Che, S.
BIOSIS:PREV201100547667
ISSN: 1558-3635
CID: 459172
Microarray analysis of hippocampal pyramidal neurons in murine models of Down's syndrome (DS) and Alzheimer's disease (AD) [Meeting Abstract]
Alldred, M. J.; Ginsberg, S. D.
BIOSIS:PREV201100547668
ISSN: 1558-3635
CID: 459142
Regional Selectivity of rab5 and rab7 Protein Upregulation in Mild Cognitive Impairment and Alzheimer's Disease
Ginsberg, Stephen D; Mufson, Elliott J; Counts, Scott E; Wuu, Joanne; Alldred, Melissa J; Nixon, Ralph A; Che, Shaoli
Endocytic alterations are one of the earliest changes to occur in Alzheimer's disease (AD), and are hypothesized to be involved in the selective vulnerability of specific neuronal populations during the progression of AD. Previous microarray and real-time quantitative PCR experiments revealed an upregulation of the early endosomal effector rab5 and the late endosome constituent rab7 in the hippocampus of people with mild cognitive impairment (MCI) and AD. To assess whether these select rab GTPase gene expression changes are reflected in protein levels within selectively vulnerable brain regions (basal forebrain, frontal cortex, and hippocampus) and relatively spared areas (cerebellum and striatum), we performed immunoblot analysis using antibodies directed against rab5 and rab7 on postmortem human brain tissue harvested from cases with a premortem clinical diagnosis of no cognitive impairment (NCI), MCI, and AD. Results indicate selective upregulation of both rab5 and rab7 levels within basal forebrain, frontal cortex, and hippocampus in MCI and AD, which also correlated with Braak staging. In contrast, no differences in protein levels were found in the less vulnerable cerebellum and striatum. These regional immunoblot assays are consistent with single cell gene expression data, and provide protein-based evidence for endosomal markers contributing to the vulnerability of cell types within selective brain regions during the progression of AD
PMCID:3031860
PMID: 20847427
ISSN: 1875-8908
CID: 114587
Regional selectivity of rab5 and rab7 protein up regulation in mild cognitive impairment (MCI) and Alzheimer's disease (AD) [Meeting Abstract]
Che, S.; Mufson, E. J.; Counts, S. E.; Wuu, J.; Alldred, M. J.; Nixon, R. A.; Ginsberg, S. D.
BIOSIS:PREV201100547670
ISSN: 1558-3635
CID: 459152
Terminal continuation (TC) RNA amplification without second strand synthesis
Alldred, Melissa J; Che, Shaoli; Ginsberg, Stephen D
Terminal continuation (TC) RNA amplification was developed originally to reproducibly and inexpensively amplify RNA. The TC RNA amplification method has been improved further by obviating second strand DNA synthesis, a cost-effective protocol that takes less time to perform with fewer manipulations required for RNA amplification. Results demonstrate that TC RNA amplification without second strand synthesis does not differ from the original protocol using RNA harvested from mouse brain and from hippocampal neurons obtained via laser capture microdissection from postmortem human brains. The modified TC RNA amplification method can discriminate single cell gene expression profiles between normal control and Alzheimer's disease hippocampal neurons indistinguishable from the original protocol. Thus, TC RNA amplification without second strand synthesis is a reproducible, time- and cost-effective method for RNA amplification from minute amounts of input RNA, and is compatible with microaspiration strategies and subsequent microarray analysis as well as quantitative real-time PCR
PMCID:2659495
PMID: 19026688
ISSN: 0165-0270
CID: 105217
Microarray analysis of CA1 pyramidal neurons in aged hTau mice reveals synaptic dysfunction [Meeting Abstract]
Alldred, M. J.; Duff, K. E.; Ginsberg, S. D.
BIOSIS:PREV201200030449
ISSN: 1558-3635
CID: 459192