Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:balapb01

Total Results:

74


Neuromodulatory role of the endocannabinoid signaling system in alcoholism: an overview

Basavarajappa, B S; Hungund, B L
The current review evaluates the evidence that some of the pharmacological and behavioral effects of ethanol (EtOH), including EtOH-preferring behavior, may be mediated through the endocannabinoid signaling system. The recent advances in the understanding of the neurobiological basis of alcoholism suggest that the pharmacological and behavioral effects of EtOH are mediated through its action on neuronal signal transduction pathways and ligand-gated ion channels, receptor systems, and receptors that are coupled to G-proteins. The identification of a G-protein-coupled receptor, namely, the cannabinoid receptor (CB1 receptor) that was activated by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major psychoactive component of marijuana, led to the discovery of endogenous cannabinoid agonists. To date, two fatty acid derivatives identified to be arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) have been isolated from both nervous and peripheral tissues. Both these compounds have been shown to mimic the pharmacological and behavioral effects of Delta(9)-THC. The involvement of the endocannabinoid signaling system in the development of tolerance to the drugs of abuse including EtOH has not been known until recently. Recent studies from our laboratory have demonstrated for the first time the down-regulation of CB1 receptor function and its signal transduction by chronic EtOH. The observed down-regulation of CB1 receptor binding and its signal transduction results from the persistent stimulation of the receptors by the endogenous CB1 receptor agonists, AEA and 2-AG, the synthesis of which has been found to be increased by chronic EtOH treatment. This enhanced formation of endocannabinoids may subsequently influence the release of neurotransmitters. It was found that the DBA/2 mice, known to avoid EtOH intake, have significantly reduced brain-CB1-receptor function consistent with other studies, where the CB1 receptor antagonist SR141716A has been shown to block voluntary EtOH intake in rodents. Similarly, activation of the CB1 receptor system promoted alcohol craving, suggesting a role for the CB1 receptor gene in excessive EtOH drinking behavior and development of alcoholism. Ongoing investigations may lead to the development of potential therapeutic strategies for the treatment of alcoholism.
PMID: 12052043
ISSN: 0952-3278
CID: 4142112

Cannabinoid receptor agonist-stimulated [35S]guanosine triphosphate gammaS binding in the brain of C57BL/6 and DBA/2 mice

Basavarajappa, B S; Hungund, B L
The two inbred strains of mice C57BL/6 (alcohol-preferring) and DBA/2 (alcohol-avoiding) mice have been shown to differ significantly in their preference for alcohol (EtOH). We have previously demonstrated the differences in the density and the affinity of cannabinoid (CB1) receptors in the brains of the two inbred C57BL/6 and DBA/2 mouse strains. In the present study, we investigated the CB1 receptor agonist-stimulated guanosine-5'-O-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding in plasma membranes (PM) from C57BL/6 and DBA/2 mice. The results indicate that the net CP55,940-stimulated [(35)S]GTPgammaS binding was increased with increasing concentrations of CB1 receptor agonists and GDP. The net CB1 receptor agonist (WIN55,212-2 or HU-210 or CP55,940)-stimulated [(35)S]GTPgammaS binding was reduced significantly (-10% to -12%, P < 0.05) in PM from DBA/2 mice; no significant differences were observed in basal [(35)S]GTPgammaS binding among these strains. Nonlinear regression analysis of net CP55,940-stimulated [(35)S]GTPgammaS binding showed that the B(max) of cannabinoid agonist-stimulated binding was significantly reduced (-24%) in DBA/2 mice (B(max) = 12.43 +/- 0.64 for C57BL/6 and 9.46 +/- 0.98 pmol/mg protein for DBA/2; P < 0.05) without any significant changes in the G protein affinity. The pharmacological specificity of CP55,940-stimulated [(35)S]GTPgammaS binding was examined with CB1 receptor antagonist SR141716A, and these studies indicated that CP55,940-stimulated [(35)S]GTPgammaS binding was blocked by SR141716A, with a decrease in the IC(50) values in the PM from the DBA/2 mouse strain. These results suggest that a signal transduction pathway(s) downstream from the CB1 receptor system may play an important role in controlling the voluntary EtOH consumption by these strains of mice.
PMID: 11340650
ISSN: 0360-4012
CID: 4142102

99HRT Protection Against Excessive Alcohol Consumption by Opioid Receptor Kappa 1

Vadasz, Csaba; Saito, Mariko; Basavarajappa, Balapal
[Ft. Belvoir, VA] : Ft. Belvoir Defense Technical Information Center, 2001
Extent: 14 p.
ISBN: n/a
CID: 2216

Stimulation of cannabinoid receptor agonist 2-arachidonylglycerol by chronic ethanol and its modulation by specific neuromodulators in cerebellar granule neurons

Basavarajappa, B S; Saito, M; Cooper, T B; Hungund, B L
In an earlier study, we reported that chronic ethanol (EtOH) stimulates the formation of anandamide in human SK-N-SH cells. In the present study, we investigated the effect of chronic EtOH on the formation of yet another cannabinoid receptor (CB1) agonist, 2-arachidonylglycerol (2-AG), in cerebellar granule neurons (CGNs). The formation of 2-[(3)H]AG without any stimulation was more pronounced in the older cultures than in younger cultures. Exposure of CGNs to EtOH led to a significant increase in the level of 2-[(3)H]AG (P<0.05). Incubation with the anandamidehydrolase inhibitor phenylmethylsulfonyl fluoride and EtOH did result in an additive increase in 2-[(3)H]AG, but did not with E-6-(bromomethylene)tetrahydro-3-(1-naphthelenyl)-2H-pyran-2-one. The formation of 2-[(3)H]AG was enhanced by ionomycin in both the control and EtOH-exposed CGNs, and the ionomycin-stimulated 2-[(3)H]AG synthesis was inhibited by the intracellular chelating agent 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Further, glutamate increased the formation of 2-[(3)H]AG only in control CGNs. MK-801 inhibited the EtOH-induced 2-[(3)H]AG synthesis, suggesting the participation of intracellular Ca(2+) in EtOH-induced 2-[(3)H]AG synthesis. The dopamine receptor (D2) agonist did not modify the 2-AG synthesis in either the control or EtOH-exposed CGNs. However, the D2 receptor antagonist inhibited the EtOH-induced formation of 2-[(3)H]AG. The EtOH-induced 2-[(3)H]AG formation was inhibited by SR141716A and pertussis toxin, suggesting the CB1 receptor- and Gi/o-protein-mediated regulation of 2-AG. The observed increase in 2-AG level in CGNs is possibly a mechanism for neuronal adaptation to the continuous presence of EtOH. These findings indicate that some of the pharmacological actions of EtOH may involve alterations in the endocannabinoid signaling system
PMID: 11113634
ISSN: 0006-3002
CID: 137719

Distinct differences in the cannabinoid receptor binding in the brain of C57BL/6 and DBA/2 mice, selected for their differences in voluntary ethanol consumption

Hungund, B L; Basavarajappa, B S
The two inbred strains of mice C57BL/6 and DBA/2 mice have been shown to differ significantly in their preference for alcohol (EtOH). These strains of mice have been employed to study various aspects of pharmacological and behavioral effects of EtOH. We have previously demonstrated that chronic EtOH exposure down-regulated cannabinoid receptors (CB1) in mouse synaptic plasma membranes and enhanced the synthesis of endogenous cannabimimetic compound anandamide (AnNH) in human neuroblastoma cells. The purpose of the present study was to investigate whether there were differences in the density and the affinity of CB1 receptors in the brains of the two inbred C57BL/6 (alcohol-preferring) and DBA/2 (alcohol avoiding) mice. The results indicate the presence of specific CB1 receptors in the brain membranes of both the strains. It was also found that the CB1 receptor densities (B(max)) were 25% lower in C57BL/6 (0.66 +/- 0.15 pmol/mg protein) compared with that of DBA/2 (0.88 +/- 0.08 pmol/mg protein) mice. Significant differences in the affinity were also observed between the two lines (K(d), 0.68 +/- 0.15 nM for C57BL/6 and 2.21 +/- 0.56 nM for DBA/2). The competition studies with SR141716A, a CB1 receptor antagonist, and 2-arachidonylglycerol (2-AG) and anandamide (AnNH), known CB1 receptor agonists, all showed a substantial decrease in [(3)H]CP-55,940 binding in both strains of mice with a higher K(i) values in the DBA/2 mice. These results suggest that CB1 receptor signal transduction may play an important role in controlling the voluntary EtOH consumption by these strains of mice.
PMID: 10723075
ISSN: 0360-4012
CID: 4142082

Are anandamide and cannabinoid receptors involved in ethanol tolerance? A review of the evidence

Hungund, B L; Basavarajappa, B S
There have been significant developments towards the elucidation of molecular and cellular changes in neuronal second messenger pathways involved in the development of tolerance to and dependence on ethanol (EtOH). The long-term exposure to EtOH has been shown to affect several aspects of neuronal signal transduction as well as ligand-gated ion channels and receptor systems, including the receptors that are coupled to the superfamily of GTP binding regulatory proteins (G-proteins). The recent identification of a G-protein coupled receptor that was activated by delta-9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, led to the discovery of endogenous agonists. One such agonist found to exist in mammalian brain was characterized to be an arachidonic acid (AA) metabolite and was named anandamide (AnNH). AnNH has been shown to bind specifically to the cannabinoid receptor (CB(1)) and mimic many of the pharmacological and behavioural effects of THC including tolerance development. The role of endocannabinoids and the CB(1) receptor signal transduction system in tolerance development to drugs of abuse has not been explored until recently. The findings presented in this review provide evidence for the first time that some of the pharmacological actions of EtOH including tolerance development may be mediated through participation of the endocannabinoid-CB(1) receptor signal transduction system. Recent studies have shown that chronic EtOH exposure produces downregulation of CB(1) receptors and an inhibition of CB(1) receptor agonist-stimulated GTPgammaS binding in mouse brain synaptic plasma membranes (SPM). The observed receptor downregulation results from the persistent stimulation of the receptors by the endogenous CB(1) receptor agonist AnNH, the synthesis of which is increased by chronic EtOH exposure. Further, the CB(1) receptor antagonist SR-141716A has been shown to block voluntary EtOH intake in rats and mice. Based on these studies, a hypothesis is presented to explain the possible involvement of the endocannabinoid system in the pharmacological and behavioural effects of EtOH.
PMID: 10787386
ISSN: 0735-0414
CID: 4142092

Chronic ethanol increases the cannabinoid receptor agonist anandamide and its precursor N-arachidonoylphosphatidylethanolamine in SK-N-SH cells

Basavarajappa, B S; Hungund, B L
In an earlier study, we demonstrated that chronic ethanol (EtOH) exposure down-regulated the cannabinoid receptors (CB1) in mouse brain synaptic plasma membrane. In the present study, we investigated the effect of chronic EtOH on the formation of anandamide (AnNH), an endogenous cannabimimetic compound, and its precursor N-arachidonoylphosphatidylethanolamine (N-ArPE) in SK-N-SH cells that were prelabeled with [3H]arachidonic acid. The results indicate that exposure of SK-N-SH cells to EtOH (100 mM) for 72 h significantly increased levels of [3H]AnNH and [3H]N-ArPE (p < 0.05) (1.43-fold for [3H]AnNH and 1.65-fold for [3H]N-ArPE). Exposure of SK-N-SH cells to EtOH (100 mM, 24 h) inhibited initially the formation of [3H]AnNH at 24 h, followed by a progressive increase, reaching a statistical significance level at 72 h (p < 0.05). [3H]N-ArPE increased gradually to a statistically significant level after 48 and 72 h (p < 0.05). Incubation with exogenous ethanolamine (7 mM) and EtOH (100 mM, 72 h) did not result in an additive increase in the formation of [3H]AnNH. The formation of [3H]AnNH and [3H]N-ArPE by EtOH was enhanced by the Ca2+ ionophore A23187 or by the depolarizing agent veratridine and the K+ channel blocker 4-aminopyridine. Further, the EtOH-induced formation of [3H]AnNH and [3H]N-ArPE was inhibited by exogenous AnNH, whereas only [3H]AnNH formation was inhibited by the CB1 receptor antagonist SR141716A and pertussis toxin, suggesting that the CB1 receptor and G(i/o) protein mediated the regulation of AnNH levels. The observed increase in the levels of these lipids in SK-N-SH cells may be a mechanism for neuronal adaptation and may serve as a compensatory mechanism to counteract the continuous presence of EtOH. The present observation taken together with our previous results indicate the involvement of the endocannabinoid system in mediating some of the pharmacological actions of EtOH and may constitute part of a common brain pathway mediating reinforcement of drugs of abuse including EtOH.
PMID: 9930723
ISSN: 0022-3042
CID: 4142422

Down-regulation of cannabinoid receptor agonist-stimulated [35S]GTP gamma S binding in synaptic plasma membrane from chronic ethanol exposed mouse

Basavarajappa, B S; Hungund, B L
In our previous study, we demonstrated that chronic ethanol (EtOH) exposure down-regulated the cannabinoid receptors (CB1) in mouse brain synaptic plasma membrane (SPM) (Basavarajappa et al., Brain Res. 793 (1998) 212-218). In the present study, we investigated the effect of chronic EtOH (4-day inhalation) on the CB1 agonist stimulated guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTP gamma S) binding in SPM from mouse. Our results indicate that the net CP55,940 stimulated [35S]GTP gamma S binding was increased with increasing concentrations of CP55,940 and GDP. This net CP55,940 (1.5 microM) stimulated [35S]GTP gamma S binding was reduced significantly (-25%) in SPM from chronic EtOH group (175 +/- 5.25%, control; 150 +/- 8.14%, EtOH; P < 0.05). This effect occurs without any significant changes on basal [35S]GTP gamma S binding (152.1 +/- 10.7 for control, 147.4 +/- 5.0 fmol/mg protein for chronic EtOH group, P > 0.05). Non-linear regression analysis of net CP55,940 stimulated [35S]GTP gamma S binding in SPM showed that the Bmax of cannabinoid stimulated binding was significantly reduced in chronic EtOH exposed mouse (Bmax = 7.58 +/- 0.22 for control; 6.42 +/- 0.20 pmol/mg protein for EtOH group; P < 0.05) without any significant changes in the G-protein affinity (Kd = 2.68 +/- 0.24 for control; 3.42 +/- 0.31 nM for EtOH group; P > 0.05). The pharmacological specificity of CP55,940 stimulated [35S]GTP gamma S binding in SPM was examined with CB1 receptor antagonist, SR141716A and these studies indicated that CP55,940 stimulated [35S]GTP gamma S binding was blocked by SR141716A with a decrease (P < 0.05) in the IC50 values in the SPM from chronic EtOH group. These results suggest that the observed down-regulation of CB1 receptors by chronic EtOH has a profound effect on desensitization of cannabinoid-activated signal transduction and possible involvement of CB1 receptors in EtOH tolerance and dependence.
PMID: 9974126
ISSN: 0006-8993
CID: 4142432

Chronic ethanol administration down-regulates cannabinoid receptors in mouse brain synaptic plasma membrane

Basavarajappa, B S; Cooper, T B; Hungund, B L
The effects of chronic ethanol (EtOH) consumption on the central nervous system may be related in part to its action on biological membranes by altering various receptor functions. In the current study, we examined the effects of chronic EtOH (4 day inhalation) on cannabinoid receptors (CB1) labeled with [3H]CP55,940 in synaptic plasma membranes (SPM) isolated from mouse brain. Our results indicate the presence of a high level of CB1 receptors in controls (Bmax=12.0+/-0.3 pmol mg-1 protein) which decreased significantly (-58%) in SPM from mouse brain chronically exposed to EtOH. This effect occurs without any changes in the receptor affinity (Kd=2. 3+/-0.3 nM for control and 2.9+/-0.3 nM for EtOH group, P>0.05). Dissociation kinetic results showed a dissociation rate constant (K-1) of 0.09+/-0.01 min-1 for control and this dissociation rate constant decreased significantly in the chronic EtOH treated mice brain (0.05+/-0.01 min-1, P<0.05). The competition studies with anandamide resulted in a substantial decrease in [3H]CP55,940 binding in both the control and EtOH group, with a decrease (P<0.05) in the Ki values in the SPM of chronic EtOH exposed mice. Hill transformation analysis showed an nH close to one in control (0. 92+/-0.01). This did not change significantly after chronic EtOH (0. 95+/-0.01) administration, which indicates the existence of a single class of receptor for [3H]CP55,940 binding in SPM from control and EtOH treated mice. The observed down-regulation of CB1 receptors by chronic EtOH may indicate the involvement of cannabinoid receptors in EtOH tolerance and dependence
PMID: 9630633
ISSN: 0006-8993
CID: 137736

Effect of chronic ethanol exposure on mouse brain arachidonic acid specific phospholipase A2

Basavarajappa, B S; Cooper, T B; Hungund, B L
The enzyme phospholipase A2 (PLA2), which catalyzes the hydrolysis of an ester bond at the sn-2 position of 1,2-sn-diacylglycerols, has been suggested to play an important role in regulating cellular functions. Although ethanol (EtOH)-induced activation of PLA2 activity was reported previously by us in mouse brain (Hungund et al., Neurochem Int 25: 321-325, 1994), its subcellular localization and biochemical properties have not been investigated. Therefore, in the present study, we examined the subcellular localization and characterization of EtOH-activated PLA2 activity in mouse brain. The results indicated that EtOH treatment decreased the specific activity of PLA2 for the first 48 hr, and then the activity increased and reached a peak level in both cytosol (1.6-fold) and membrane (1.7-fold) fractions at 96 hr of exposure. Specific activity was found to be higher in the membrane fraction than in the cytosol. Using differential density gradient centrifugation, subcellular localization of the membrane-associated PLA2 revealed that most of the EtOH-activated PLA2 specific activity was associated with the synaptic membrane (44%) followed by the nuclear membrane (13%). No significant increase in the PLA2 specific activity of mitochondrial and microsomal membranes was observed. No activity was detected in the myelin membrane. PLA2 specific activity of membranes from control and EtOH-exposed mouse brain exhibited preference for arachidonic acid over linoleic acid at the sn-2 position of glycero-3-phosphocholine (PC). No detectable PLA2 specific activity was found when PC containing oleic acid at the sn-2 position was used as a substrate. The present results also indicated that the PLA2 specific activity of membrane from control and EtOH-exposed mouse brain was insensitive to dithiothreitol, strongly stimulated by Ca2+, enhanced by glycerol, and inhibited by the cytosolic PLA2 (cPLA2) inhibitor methyl arachidonyl fluorophosphonate with an IC50 value of 3.33 microM. In summary, results suggest that the properties of EtOH-activated PLA2 activity found in mouse brain membrane fraction are similar to those of cPLA2 found in variety of cells, including mammalian brain
PMID: 9514087
ISSN: 0006-2952
CID: 137738