Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:belasj01

Total Results:

108


Structural Model for the Cooperative Assembly of HIV-1 Rev Multimers on the RRE as Deduced from Analysis of Assembly-Defective Mutants

Jain C; Belasco JG
The functional efficacy of the HIV-1 Rev protein is highly dependent on its ability to assemble onto its HIV-1 RNA target (the RRE) as a multimeric complex. To elucidate the mechanism of multimeric assembly, we have devised two rapid and broadly applicable strategies for examining cooperative interactions between proteins bound to RNA, one based on cooperative translational repression of a two-site reporter and the other on gel shift analysis with crude E. coli extracts. Using these strategies, we have identified two distinct surfaces of Rev (head and tail) that are critical for different steps in multimeric assembly. Our data indicate that Rev assembles cooperatively on the RRE via a series of symmetrical tail-to-tail and head-to-head protein-protein interactions. The insights into molecular architecture suggested by these findings have enabled us to derive a structural model for Rev and its multimerization on the RRE
PMID: 11463385
ISSN: 1097-2765
CID: 21108

An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression

Diwa A; Bricker AL; Jain C; Belasco JG
RNase E is a key regulatory enzyme that controls the principal pathway for mRNA degradation in Escherichia coli. The cellular concentration of this endonuclease is governed by a feedback mechanism in which RNase E tightly regulates its own synthesis. Autoregulation is mediated in cis by the 361-nucleotide 5' untranslated region (UTR) of rne (RNase E) mRNA. Here we report the determination of the secondary structure of the rne 5' UTR by phylogenetic comparison and chemical alkylation, together with dissection studies to identify the 5' UTR element that mediates autoregulation. Our findings reveal that the structure and function of the rne 5' UTRs are evolutionarily well conserved despite extensive sequence divergence. Within the rne 5' UTRs are multiple RNA secondary structure elements, two of which function in cis to mediate feedback regulation of rne gene expression. The more potent of these two elements is a stem-loop structure containing an internal loop whose sequence is the most highly conserved of any region of the rne 5' UTR. Our data show that this stem-loop functions as a sensor of cellular RNase E activity that directs autoregulation by modulating the degradation rate of rne mRNA in response to changes in RNase E activity
PMCID:316614
PMID: 10817759
ISSN: 0890-9369
CID: 11692

Regions of RNase E important for 5'-end-dependent RNA cleavage and autoregulated synthesis

Jiang X; Diwa A; Belasco JG
RNase E is an important regulatory enzyme that plays a key role in RNA processing and degradation in Escherichia coli. Internal cleavage by this endonuclease is accelerated by the presence of a monophosphate at the RNA 5' end. Here we show that the preference of E. coli RNase E for 5'-monophosphorylated substrates is an intrinsic property of the catalytically active amino-terminal half of the enzyme and does not require the carboxy-terminal region. This property is shared by the related E. coli ribonuclease CafA (RNase G) and by a cyanobacterial RNase E homolog derived from Synechocystis, indicating that the 5'-end dependence of RNase E is a general characteristic of members of this ribonuclease family, including those from evolutionarily distant species. Although it is dispensable for 5'-end-dependent RNA cleavage, the carboxy-terminal half of RNase E significantly enhances the ability of this ribonuclease to autoregulate its synthesis in E. coli. Despite similarities in amino acid sequence and substrate specificity, CafA is unable to replace RNase E in sustaining E. coli cell growth or in regulating RNase E production, even when overproduced sixfold relative to wild-type RNase E levels
PMCID:111309
PMID: 10762247
ISSN: 0021-9193
CID: 11758

Rapid genetic analysis of RNA-protein interactions by translational repression in Escherichia coli [In Process Citation]

Jain C; Belasco JG
PMID: 10889996
ISSN: 0076-6879
CID: 11605

Importance of a 5' stem-loop for longevity of papA mRNA in Escherichia coli

Bricker AL; Belasco JG
High-level expression of the major pilus subunit (PapA) of uropathogenic strains of Escherichia coli results in part from the unusually long lifetime of the mRNA that encodes this protein. Here we report that the longevity of papA mRNA derives in large measure from the protection afforded by its 5' untranslated region. This papA RNA segment can prolong the lifetime of an otherwise short-lived mRNA to which it is fused. In vivo alkylation studies indicate that, in its natural milieu, the papA message begins with a stem-loop structure. This stem-loop is important for the stabilizing effect of the papA 5' untranslated region, as evidenced by the significant acceleration in papA mRNA decay that results from its removal
PMCID:93829
PMID: 10348874
ISSN: 0021-9193
CID: 14506

Target discrimination by RNA-binding proteins: role of the ancillary protein U2A' and a critical leucine residue in differentiating the RNA-binding specificity of spliceosomal proteins U1A and U2B"

Rimmele ME; Belasco JG
The spliceosomal proteins U1A and U2B' each use a homologous RRM domain to bind specifically to their respective snRNA targets, U1hpll and U2hpIV, two stem-loops that are similar yet distinct in sequence. Previous studies have shown that binding of U2B' to U2hpIV is facilitated by the ancillary protein U2A', whereas specific binding of U1A to U1hpll requires no cofactor. Here we report that U2A' enables U2B' to distinguish the loop sequence of U2hpIV from that of U1hpll but plays no role in stem sequence discrimination. Although U2A' can also promote heterospecific binding of U1A to U2hpIV, a much higher concentration of the ancillary protein is required due to the approximately 500-fold greater affinity of U2A' for U2B'. Additional experiments have identified a single leucine residue in U1A(Leu-44) that is critical for the intrinsic specificity of this protein for the loop sequence of U1 hpll in preference to that of U2hpIV. Our data suggest that most of the difference in RNA-binding specificity between U1A and U2B' can be accounted for by this leucine residue and by the contribution of the ancillary protein U2A' to the specificity of U2B'
PMCID:1369711
PMID: 9814759
ISSN: 1355-8382
CID: 57067

RNA-binding proteins tamed [Comment]

Laird-Offringa IA; Belasco JG
Novel RNA-binding proteins with customized specificities can be isolated by genetic selection from combinatorial libraries. Such proteins have great potential as agents for targeted manipulation of gene expression
PMID: 9699622
ISSN: 1072-8368
CID: 14507

mRNA stabilization by the ompA 5' untranslated region: two protective elements hinder distinct pathways for mRNA degradation

Arnold TE; Yu J; Belasco JG
The 5' untranslated region (UTR) of the long-lived Escherichia coli ompA transcript functions as an mRNA stabilizer that can prolong the cytoplasmic lifetimes of a variety of messages to which it is fused. Previous studies have identified two domains of this 5' UTR that together are responsible for its stabilizing effect. One is a 5'-terminal stem-loop. The other is a single-stranded RNA segment (ss2) that contains a ribosome binding site highly complementary to 16S ribosomal RNA. Here we report a detailed investigation of the function of these two stabilizing elements. Our data indicate that mRNA protection by a 5' stem-loop requires no sequence features or thermodynamic stability beyond the minimum necessary for stem-loop formation. Stabilization by ss2 appears to result not from a high frequency of translation initiation, but rather from a high degree of occupancy of this 5' UTR segment by bound ribosomes. Although close spacing of translating ribosomes is not critical for message stabilization by the ompA 5' UTR, mRNA longevity does require the periodic passage of ribosomes through the protein-coding region. Unlike bound ribosomes, which hinder mRNA cleavage by RNase E, the 5' stem-loop appears to impede degradation of ompA mRNA via a distinct pathway that is RNase E-independent. These findings imply that the ompA 5' UTR prolongs mRNA longevity by impeding multiple pathways for mRNA degradation
PMCID:1369620
PMID: 9510333
ISSN: 1355-8382
CID: 57097

RNA recognition by the joint action of two nucleolin RNA-binding domains: genetic analysis and structural modeling

Bouvet P; Jain C; Belasco JG; Amalric F; Erard M
The interaction of nucleolin with a short stem-loop structure (NRE) requires two contiguous RNA-binding domains (RBD 1+2). The structural basis for RNA recognition by these RBDs was studied using a genetic system in Escherichia coli. Within each of the two domains, we identified several mutations that severely impair interaction with the RNA target. Mutations that alter RNA-binding specificity were also isolated, suggesting the identity of specific contacts between RBD 1+2 amino acids and nucleotides within the NRE stem-loop. Our data indicate that both RBDs participate in a joint interaction with the NRE and that each domain uses a different surface to contact the RNA. The constraints provided by these genetic data and previous mutational studies have enabled us to propose a three-dimensional model of nucleolin RBD 1+2 bound to the NRE stem-loop
PMCID:1170156
PMID: 9311984
ISSN: 0261-4189
CID: 14508

A structural model for the HIV-1 Rev-RRE complex deduced from altered-specificity rev variants isolated by a rapid genetic strategy

Jain C; Belasco JG
A broadly applicable genetic strategy was developed for investigating RNA-protein interactions and applied to the HIV-1 Rev protein. By rapidly screening thousands of Rev-RNA interactions in Escherichia coli, we isolated Rev suppressor mutations that alleviated the deleterious effect of mutations in RRE stem-loop IIB, the high affinity RNA-binding site for Rev. All of these suppressor mutations map to a single arginine-deficient face of a Rev alpha-helix, and some alter the binding specificity of the protein, providing genetic evidence for direct contacts between specific Rev amino acids and RNA nucleotides in the RNA complex of Rev. The spatial constraints suggested by these data have enabled us to model the structure of this complex
PMID: 8858154
ISSN: 0092-8674
CID: 14509