Searched for: in-biosketch:yes
person:cd38
Homothorax and Extradenticle alter the transcription factor network in Drosophila ommatidia at the dorsal rim of the retina
Wernet, Mathias F; Desplan, Claude
A narrow band of ommatidia in the dorsal periphery of the Drosophila retina called the dorsal rim area (DRA) act as detectors for polarized light. The transcription factor Homothorax (Hth) is expressed in DRA inner photoreceptors R7 and R8 and is both necessary and sufficient to induce the DRA fate, including specialized morphology and unique Rhodopsin expression. Hth expression is the result of Wingless (Wg) pathway activity at the eye margins and restriction to the dorsal eye by the selector genes of the Iroquois complex (Iro-C). However, how the DRA is limited to exactly one or two ommatidial rows is not known. Although several factors regulating the Drosophila retinal mosaic are expressed in DRA ommatidia, the role of Hth in this transcriptional network is uncharacterized. Here we show that Hth functions together with its co-factor Extradenticle (Exd) to repress the R8-specific factor Senseless (Sens) in DRA R8 cells, allowing expression of an ultraviolet-sensitive R7 Rhodopsin (Rh3). Furthermore, Hth/Exd act in concert with the transcriptional activators Orthodenticle (Otd) and Spalt (Sal), to activate expression of Rh3 in the DRA. The resulting monochromatic coupling of Rh3 between R7 and R8 in DRA ommatidia is important for comparing celestial e-vector orientation rather than wavelengths. Finally, we show that Hth expression expands to many ommatidial rows in regulatory mutants of optomotorblind (omb), a transcription factor transducing Wg signaling at the dorsal and ventral eye poles. Therefore, locally restricted recruitment of the DRA-specific factor Hth alters the transcriptional network that regulates Rhodopsin expression across ommatidia.
PMCID:3912834
PMID: 24496628
ISSN: 1477-9129
CID: 1694272
Sensory cell fates: four defaults for the price of one [Comment]
Wernet, Mathias F; Desplan, Claude
The specification of different subtypes of olfactory sensilla, which harbor the olfactory receptor neurons (ORNs) in the Drosophila antennae, is poorly understood. Loss of the transcription factor Rotund (Rn) leads to a simultaneous mis-specification of several ORN classes, transforming them into different 'default' cell fates.
PMCID:4134906
PMID: 24355782
ISSN: 1879-0445
CID: 1694282
Opposing feedbacks on Ras tune receptor tyrosine kinase signaling
Perry, Michael; Desplan, Claude
Signaling in development is not always on or off; often, distinct intensity and duration of signaling leads to distinct outcomes. This is true for receptor tyrosine kinase (RTK) signaling in many contexts, where negative feedback often plays a role. Although such negative feedback might reduce or even turn off signaling output over time, continued signaling is often maintained for proper cell fate specification. In this issue, Sieglitz et al. identify a positive regulator of Ras-mediated RTK signaling that they name Rau. Rau is necessary to achieve specific signaling intensity for the differentiation of photoreceptors and of glia that wrap axons in the developing Drosophila eye disc. Both the negative regulator Sprouty and Rau influence signaling through the guanosine triphosphatase Ras; specifically, Rau forms a positive feedback loop important for counteracting the Sprouty negative feedback loop.
PMCID:4136755
PMID: 24194582
ISSN: 1937-9145
CID: 1694292
Conserved miR-8/miR-200 defines a glial niche that controls neuroepithelial expansion and neuroblast transition
Morante, Javier; Vallejo, Diana M; Desplan, Claude; Dominguez, Maria
Neuroepithelial cell proliferation must be carefully balanced with the transition to neuroblast (neural stem cell) to control neurogenesis. Here, we show that loss of the Drosophila microRNA mir-8 (the homolog of vertebrate miR-200 family) results in both excess proliferation and ectopic neuroblast transition. Unexpectedly, mir-8 is expressed in a subpopulation of optic-lobe-associated cortex glia that extend processes that ensheath the neuroepithelium, suggesting that glia cells communicate with the neuroepithelium. We provide evidence that miR-8-positive glia express Spitz, a transforming growth factor alpha (TGF-alpha)-like ligand that triggers epidermal growth factor receptor (EGFR) activation to promote neuroepithelial proliferation and neuroblast formation. Further, our experiments suggest that miR-8 ensures both a correct glial architecture and the spatiotemporal control of Spitz protein synthesis via direct binding to Spitz 3' UTR. Together, these results establish glial-derived cues as key regulatory elements in the control of neuroepithelial cell proliferation and the neuroblast transition.
PMCID:3931912
PMID: 24139822
ISSN: 1878-1551
CID: 1694302
Opposite feedbacks in the Hippo pathway for growth control and neural fate
Jukam, David; Xie, Baotong; Rister, Jens; Terrell, David; Charlton-Perkins, Mark; Pistillo, Daniela; Gebelein, Brian; Desplan, Claude; Cook, Tiffany
Signaling pathways are reused for multiple purposes in plant and animal development. The Hippo pathway in mammals and Drosophila coordinates proliferation and apoptosis via the coactivator and oncoprotein YAP/Yorkie (Yki), which is homeostatically regulated through negative feedback. In the Drosophila eye, cross-repression between the Hippo pathway kinase LATS/Warts (Wts) and growth regulator Melted generates mutually exclusive photoreceptor subtypes. Here, we show that this all-or-nothing neuronal differentiation results from Hippo pathway positive feedback: Yki both represses its negative regulator, warts, and promotes its positive regulator, melted. This postmitotic Hippo network behavior relies on a tissue-restricted transcription factor network-including a conserved Otx/Orthodenticle-Nrl/Traffic Jam feedforward module-that allows Warts-Yki-Melted to operate as a bistable switch. Altering feedback architecture provides an efficient mechanism to co-opt conserved signaling networks for diverse purposes in development and evolution.
PMCID:3796000
PMID: 23989952
ISSN: 1095-9203
CID: 1694312
The neuronal transcription factor erect wing regulates specification and maintenance of Drosophila R8 photoreceptor subtypes
Hsiao, Hui-Yi; Jukam, David; Johnston, Robert; Desplan, Claude
Signaling pathways are often re-used during development in surprisingly different ways. The Hippo tumor suppressor pathway is best understood for its role in the control of growth. The pathway is also used in a very different context, in the Drosophila eye for the robust specification of R8 photoreceptor neuron subtypes, which complete their terminal differentiation by expressing light-sensing Rhodopsin (Rh) proteins. A double negative feedback loop between the Warts kinase of the Hippo pathway and the PH-domain growth regulator Melted regulates the choice between 'pale' R8 (pR8) fate defined by Rh5 expression and 'yellow' R8 (yR8) fate characterized by Rh6 expression. Here, we show that the gene encoding the homolog of human Nuclear respiratory factor 1, erect wing (ewg), is autonomously required to inhibit warts expression and to promote melted expression to specify pR8 subtype fate and induce Rh5. ewg mutants express Rh6 in most R8s due to ectopic warts expression. Further, ewg is continuously required to maintain repression of Rh6 in pR8s in aging flies. Our work shows that Ewg is a critical factor for the stable down-regulation of Hippo pathway activity to determine neuronal subtype fates. Neural-enriched factors, such as Ewg, may generally contribute to the contextual re-use of signaling pathways in post-mitotic neurons.
PMCID:3757101
PMID: 23850772
ISSN: 1095-564x
CID: 1694322
Temporal patterning of Drosophila medulla neuroblasts controls neural fates
Li, Xin; Erclik, Ted; Bertet, Claire; Chen, Zhenqing; Voutev, Roumen; Venkatesh, Srinidhi; Morante, Javier; Celik, Arzu; Desplan, Claude
In the Drosophila optic lobes, the medulla processes visual information coming from inner photoreceptors R7 and R8 and from lamina neurons. It contains approximately 40,000 neurons belonging to more than 70 different types. Here we describe how precise temporal patterning of neural progenitors generates these different neural types. Five transcription factors-Homothorax, Eyeless, Sloppy paired, Dichaete and Tailless-are sequentially expressed in a temporal cascade in each of the medulla neuroblasts as they age. Loss of Eyeless, Sloppy paired or Dichaete blocks further progression of the temporal sequence. We provide evidence that this temporal sequence in neuroblasts, together with Notch-dependent binary fate choice, controls the diversification of the neuronal progeny. Although a temporal sequence of transcription factors had been identified in Drosophila embryonic neuroblasts, our work illustrates the generality of this strategy, with different sequences of transcription factors being used in different contexts.
PMCID:3701960
PMID: 23783517
ISSN: 1476-4687
CID: 1676052
Regional modulation of a stochastically expressed factor determines photoreceptor subtypes in the Drosophila retina
Thanawala, Shivani U; Rister, Jens; Goldberg, Gregory W; Zuskov, Andrey; Olesnicky, Eugenia C; Flowers, Jonathan M; Jukam, David; Purugganan, Michael D; Gavis, Elizabeth R; Desplan, Claude; Johnston, Robert J Jr
Stochastic mechanisms are sometimes utilized to diversify cell fates, especially in nervous systems. In the Drosophila retina, stochastic expression of the PAS-bHLH transcription factor Spineless (Ss) controls photoreceptor subtype choice. In one randomly distributed subset of R7 photoreceptors, Ss activates Rhodopsin4 (Rh4) and represses Rhodopsin3 (Rh3); counterparts lacking Ss express Rh3 and repress Rh4. In the dorsal third region of the retina, the Iroquois Complex transcription factors induce Rh3 in Rh4-expressing R7s. Here, we show that Ss levels are controlled in a binary on/off manner throughout the retina yet are attenuated in the dorsal third region to allow Rh3 coexpression with Rh4. Whereas the sensitivity of rh3 repression to differences in Ss levels generates stochastic and regionalized patterns, the robustness of rh4 activation ensures its stochastic expression throughout the retina. Our findings show how stochastic and regional inputs are integrated to control photoreceptor subtype specification in the Drosophila retina.
PMCID:3660048
PMID: 23597484
ISSN: 1878-1551
CID: 1694332
Dying to entrain: regulating ipRGC spacing [Comment]
Pinto-Teixeira, Filipe; Desplan, Claude
In a recent issue of Neuron, Chen et al. (2013) show that apoptosis is required to ensure the even distribution of a class of retinal ganglion cells (ipRGCs), which sense luminance both intrinsically and through input from rods and cones. Disrupting apoptosis impairs photoentrainment mediated by rods/cones, but not that mediated by ipRGC-expressed melanopsin.
PMCID:3744582
PMID: 23449468
ISSN: 1878-1551
CID: 1694342
Establishing and maintaining gene expression patterns: insights from sensory receptor patterning
Rister, Jens; Desplan, Claude; Vasiliauskas, Daniel
In visual and olfactory sensory systems with high discriminatory power, each sensory neuron typically expresses one, or very few, sensory receptor genes, excluding all others. Recent studies have provided insights into the mechanisms that generate and maintain sensory receptor expression patterns. Here, we review how this is achieved in the fly retina and compare it with the mechanisms controlling sensory receptor expression patterns in the mouse retina and in the mouse and fly olfactory systems.
PMCID:3561783
PMID: 23293281
ISSN: 1477-9129
CID: 1694352