Searched for: in-biosketch:yes
person:del243
IFNgamma signaling-does it mean JAK-STAT?
Gough, Daniel J; Levy, David E; Johnstone, Ricky W; Clarke, Christopher J
The molecular pathways involved in the cellular response to interferon (IFN)gamma have been the focus of much research effort due to their importance in host defense against infection and disease, as well as its potential as a therapeutic agent. The discovery of the JAK-STAT signaling pathway greatly enhanced our understanding of the mechanism of IFNgamma-mediated gene transcription. However, in recent years it has become apparent that other pathways, including MAP kinase, PI3-K, CaMKII and NF-kappaB, either co-operate with or act in parallel to JAK-STAT signaling to regulate the many facets of IFNgamma biology in a gene- and cell type-specific manner. The complex interactions between JAK/STAT and alternate pathways and the impact of these signaling networks on the biological responses to IFNgamma are beginning to be understood. This review summarizes and appraises current advances in our understanding of these complex interactions, their specificity and proposed biological outcomes
PMID: 18929502
ISSN: 1879-0305
CID: 93451
Monocytes in the urine of children with lupus: A potential marker of active nephritis [Meeting Abstract]
Kahn, PJ; Zhang, HZ; Levy, D; Imundo, L; Eichenfield, A; Winchestet, R
ISI:000259244200250
ISSN: 0004-3591
CID: 90034
Vaccinia virus protein E3L inhibits type I interferon induction by the cytoplasmic signaling pathway [Meeting Abstract]
Friedman, E; Marie, IJ; Levy, DE
ISI:000260212900292
ISSN: 1043-4666
CID: 91472
Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway
Bonni, Azad; Depinho, Ronald A; Levy, David E; You, Mingjian J; Bachoo, Robert M; Chan, Jennifer A; Puram, Sidharth V; Konopka, Genevieve; de la Iglesia, Nuria
Activation of the transcription factor STAT3 is thought to potently promote oncogenesis in a variety of tissues, leading to intense efforts to develop STAT3 inhibitors for many tumors, including the highly malignant brain tumor glioblastoma. However, the function of STAT3 in glioblastoma pathogenesis has remained unknown. Here, we report that STAT3 plays a pro-oncogenic or tumor-suppressive role depending on the mutational profile of the tumor. Deficiency of the tumor suppressor PTEN triggers a cascade that inhibits STAT3 signaling in murine astrocytes and human glioblastoma tumors. Specifically, we forge a direct link between the PTEN-Akt-FOXO axis and the leukemia inhibitory factor receptor beta (LIFRbeta)-STAT3 signaling pathway. Accordingly, PTEN knockdown induces efficient malignant transformation of astrocytes upon knockout of the STAT3 gene. Remarkably, in contrast to the tumor-suppressive function of STAT3 in the PTEN pathway, STAT3 forms a complex with the oncoprotein epidermal growth factor receptor type III variant (EGFRvIII) in the nucleus and thereby mediates EGFRvIII-induced glial transformation. These findings indicate that STAT3 plays opposing roles in glial transformation depending on the genetic background of the tumor, providing the rationale for tailored therapeutic intervention in glioblastoma
PMCID:2238667
PMID: 18258752
ISSN: 0890-9369
CID: 93452
The zinc finger antiviral protein acts synergistically with an interferon-induced factor for maximal activity against alphaviruses
MacDonald, Margaret R; Machlin, Erica S; Albin, Owen R; Levy, David E
Type I interferons (IFNs) signal through specific receptors to mediate expression of genes, which together confer a cellular antiviral state. Overexpression of the zinc finger antiviral protein (ZAP) imparts a cellular antiviral state against Retroviridae, Togaviridae, and Filoviridae virus family members. Since ZAP expression is induced by IFN, we utilized Sindbis virus (SINV) to investigate the role of other IFN-induced factors in ZAP's inhibitory potential. Overexpressed ZAP did not inhibit virion production or SINV-induced cell death in BHK cells deficient in IFN production (and thus IFN signaling), suggesting a role for an IFN-induced factor in ZAP's activity. IFN pretreatment in the presence of ZAP resulted in greater inhibition than IFN alone. Using mouse embryo fibroblast (MEF) cells deficient in Stat1, we showed that signaling through the IFN receptor is necessary for IFN's enhancement of ZAP activity. Unlike in BHK cells, however, overexpressed ZAP exhibited antiviral activity in the absence of IFN. In wild-type MEFs with an intact Stat1 gene, IFN pretreatment synergized with ZAP to generate a potent antiviral response. Despite failing to inhibit SINV virion production and virus-induced cell death in BHK cells, ZAP inhibited translation of the incoming viral RNA. IFN pretreatment synergized with ZAP to further block protein expression from the incoming viral genome. We further show that silencing of IFN-induced ZAP reduces IFN efficacy. Our findings demonstrate that ZAP can synergize with another IFN-induced factor(s) for maximal antiviral activity and that ZAP's intrinsic antiviral activity on virion production and cell survival can have cell-type-specific outcomes
PMCID:2168828
PMID: 17928353
ISSN: 1098-5514
CID: 93453
STAT3 signaling and the hyper-IgE syndrome [Editorial]
Levy, David E; Loomis, Cynthia A
PMID: 17881746
ISSN: 1533-4406
CID: 93454
IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways
Zhou, Liang; Ivanov, Ivaylo I; Spolski, Rosanne; Min, Roy; Shenderov, Kevin; Egawa, Takeshi; Levy, David E; Leonard, Warren J; Littman, Dan R
T helper cells that produce interleukin 17 (IL-17; 'T(H)-17 cells') are a distinct subset of proinflammatory cells whose in vivo function requires IL-23 but whose in vitro differentiation requires only IL-6 and transforming growth factor-beta (TGF-beta). We demonstrate here that IL-6 induced expression of IL-21 that amplified an autocrine loop to induce more IL-21 and IL-23 receptor in naive CD4(+) T cells. Both IL-21 and IL-23, along with TGF-beta, induced IL-17 expression independently of IL-6. The effects of IL-6 and IL-21 depended on STAT3, a transcription factor required for the differentiation of T(H)-17 cells in vivo. IL-21 and IL-23 induced the orphan nuclear receptor RORgammat, which in synergy with STAT3 promoted IL-17 expression. IL-6 therefore orchestrates a series of 'downstream' cytokine-dependent signaling pathways that, in concert with TGF-beta, amplify RORgammat-dependent differentiation of T(H)-17 cells
PMID: 17581537
ISSN: 1529-2908
CID: 74681
Nuclear receptor coregulator (NRC): mapping of the dimerization domain, activation of p53 and STAT-2, and identification of the activation domain AD2 necessary for nuclear receptor signaling
Mahajan, Muktar A; Murray, Audrey; Levy, David; Samuels, Herbert H
Nuclear receptor coregulator (NRC) is a 250-kDa nuclear protein involved in transcriptional activation of nuclear hormone receptors, nuclear factor-kappaB, c-Jun, c-Fos, and cAMP response element-binding protein. NRC is organized into a modular structure consisting of two activation domains (AD1 and AD2), two nuclear hormone receptor-interacting motifs, LxxLL-1 and LxxLL-2, and a C-terminal regulatory region rich in serines, threonines, and leucines. The LxxLL-1 motif of NRC binds to a broad spectrum of nuclear hormone receptors with high affinity whereas LxxLL-2 interacts with a very limited number of receptors. In this study we present further evidence that NRC can act as a dimer and have identified a dimerization region of 146 amino acids including LxxLL-1. Mutation of the core LxxLL-1 motif, however, indicates that it is not involved in the dimerization of NRC. AD2, just C-terminal of LxxLL-1, was found to play a central role in ligand-dependent activation by nuclear receptors even though AD1 exhibits more potent intrinsic activity. Thus, a short region of approximately 300 amino acids including and flanking LxxLL-1 plays an important role in NRC dimerization and nuclear receptor binding and transcriptional activation. In addition, consistent with its role as a cointegrator for transcriptional activation, NRC also functions as a coactivator for signal transducer and activator of transcription 2 (STAT-2) and p53. Activation of p53 by NRC appears to involve a novel mechanism where NRC interacts indirectly with p53 through Trap80, a member of the mediator complex, which binds NRC interacting factor-1 (NIF-1), which interacts with and potentiates the effect of NRC
PMID: 17536006
ISSN: 0888-8809
CID: 73864
Inhibition of interferon regulatory factor 7 (IRF7)-mediated interferon signal transduction by the Kaposi's sarcoma-associated herpesvirus viral IRF homolog vIRF3
Joo, Chul Hyun; Shin, Young C; Gack, Michaela; Wu, Liguo; Levy, David; Jung, Jae U
Upon viral infection, the major defense mounted by the host immune system is activation of the interferon (IFN)-mediated antiviral pathway that is mediated by IFN regulatory factors (IRFs). In order to complete their life cycle, viruses must modulate the host IFN-mediated immune response. Kaposi's sarcoma-associated herpesvirus (KSHV), a human tumor-inducing herpesvirus, has developed a unique mechanism for antagonizing cellular IFN-mediated antiviral activity by incorporating viral homologs of the cellular IRFs, called vIRFs. Here, we report a novel immune evasion mechanism of KSHV vIRF3 to block cellular IRF7-mediated innate immunity in response to viral infection. KSHV vIRF3 specifically interacts with either the DNA binding domain or the central IRF association domain of IRF7, and this interaction leads to the inhibition of IRF7 DNA binding activity and, therefore, suppression of alpha interferon (IFN-alpha) production and IFN-mediated immunity. Remarkably, the central 40 amino acids of vIRF3, containing the double alpha helix motifs, are sufficient not only for binding to IRF7, but also for inhibiting IRF7 DNA binding activity. Consequently, the expression of the double alpha helix motif-containing peptide effectively suppresses IRF7-mediated IFN-alpha production. This demonstrates a remarkably efficient means of viral avoidance of host antiviral activity
PMCID:1951281
PMID: 17522209
ISSN: 0022-538x
CID: 138972
Restricted tissue tropism and acquired resistance to Sindbis viral vector expression in the absence of innate and adaptive immunity
Tseng, J-C; Zheng, Y; Yee, H; Levy, D E; Meruelo, D
Our previous studies suggest that replication-defective Sindbis vectors might be promising agents for specific tumor targeting and detection. However, the effects of innate and/or adaptive anti-viral immunity, in particular, the IFN-I/STAT1 signaling pathway, may impact their therapeutic potential. Using a bioluminescent imaging system, we demonstrate that although most normal cells are not permissively transduced by replication-defective Sindbis vector, transduction of liver non-sinusoidal endothelial occurs the first time IFN-I/STAT1 signaling deficient mice are inoculated with the vector. Transduction of some cells is not surprising since STAT1 knockout animals show significant delay in IFN responses such as the production of IFN-alpha/beta and transcriptional activation of several anti-viral genes (IRF7, RIG-I, PKR, TLR3, USP18, ISG15). However, beyond the initial vector transduction, which resolves rapidly, secondary inoculums of Sindbis vectors do not transduce any liver cells, suggesting that an alternative antiviral pathway may protect against further transduction. Other known signaling pathways were examined using mice lacking functional TLR3, tumor necrosis factoralphaR or nuclear factor-kappa B (p50). Surprisingly, none of those pathways seem to play a significant role in anti-Sindbis responses. Thus it appears that in vivo, in contrast to the ready transduction of tumor cells, transduction of normal cells by replication-defective Sindbis vector is limited, possibly by a novel mechanism
PMID: 17508007
ISSN: 0969-7128
CID: 74661