Searched for: in-biosketch:yes
person:feskes01
Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes
Nurbaeva, M K; Eckstein, M; Snead, M L; Feske, S; Lacruz, R S
Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+-EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+-handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs.
PMCID:4577984
PMID: 26232387
ISSN: 1544-0591
CID: 1698752
Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses
Ho, Ping-Chih; Bihuniak, Jessica Dauz; Macintyre, Andrew N; Staron, Matthew; Liu, Xiaojing; Amezquita, Robert; Tsui, Yao-Chen; Cui, Guoliang; Micevic, Goran; Perales, Jose C; Kleinstein, Steven H; Abel, E Dale; Insogna, Karl L; Feske, Stefan; Locasale, Jason W; Bosenberg, Marcus W; Rathmell, Jeffrey C; Kaech, Susan M
Activated T cells engage aerobic glycolysis and anabolic metabolism for growth, proliferation, and effector functions. We propose that a glucose-poor tumor microenvironment limits aerobic glycolysis in tumor-infiltrating T cells, which suppresses tumoricidal effector functions. We discovered a new role for the glycolytic metabolite phosphoenolpyruvate (PEP) in sustaining T cell receptor-mediated Ca2+-NFAT signaling and effector functions by repressing sarco/ER Ca2+-ATPase (SERCA) activity. Tumor-specific CD4 and CD8 T cells could be metabolically reprogrammed by increasing PEP production through overexpression of phosphoenolpyruvate carboxykinase 1 (PCK1), which bolstered effector functions. Moreover, PCK1-overexpressing T cells restricted tumor growth and prolonged the survival of melanoma-bearing mice. This study uncovers new metabolic checkpoints for T cell activity and demonstrates that metabolic reprogramming of tumor-reactive T cells can enhance anti-tumor T cell responses, illuminating new forms of immunotherapy.
PMCID:4567953
PMID: 26321681
ISSN: 1097-4172
CID: 1761632
Ca2+ Signaling but Not Store-Operated Ca2+ Entry Is Required for the Function of Macrophages and Dendritic Cells
Vaeth, Martin; Zee, Isabelle; Concepcion, Axel R; Maus, Mate; Shaw, Patrick; Portal-Celhay, Cynthia; Zahra, Aleena; Kozhaya, Lina; Weidinger, Carl; Philips, Jennifer; Unutmaz, Derya; Feske, Stefan
Store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels is essential for immunity to infection. CRAC channels are formed by ORAI1 proteins in the plasma membrane and activated by stromal interaction molecule (STIM)1 and STIM2 in the endoplasmic reticulum. Mutations in ORAI1 and STIM1 genes that abolish SOCE cause severe immunodeficiency with recurrent infections due to impaired T cell function. SOCE has also been observed in cells of the innate immune system such as macrophages and dendritic cells (DCs) and may provide Ca2+ signals required for their function. The specific role of SOCE in macrophage and DC function, as well as its contribution to innate immunity, however, is not well defined. We found that nonselective inhibition of Ca2+ signaling strongly impairs many effector functions of bone marrow-derived macrophages and bone marrow-derived DCs, including phagocytosis, inflammasome activation, and priming of T cells. Surprisingly, however, macrophages and DCs from mice with conditional deletion of Stim1 and Stim2 genes, and therefore complete inhibition of SOCE, showed no major functional defects. Their differentiation, FcR-dependent and -independent phagocytosis, phagolysosome fusion, cytokine production, NLRP3 inflammasome activation, and their ability to present Ags to activate T cells were preserved. Our findings demonstrate that STIM1, STIM2, and SOCE are dispensable for many critical effector functions of macrophages and DCs, which has important implications for CRAC channel inhibition as a therapeutic strategy to suppress pathogenic T cells while not interfering with myeloid cell functions required for innate immunity.
PMCID:4506881
PMID: 26109647
ISSN: 1550-6606
CID: 1640972
A novel mutation in ORAI1 presenting with combined immunodeficiency and residual T-cell function
Chou, Janet; Badran, Yousef R; Yee, Christina S K; Bainter, Wayne; Ohsumi, Toshiro K; Al-Hammadi, Suleiman; Pai, Sung-Yun; Feske, Stefan; Geha, Raif S
PMCID:4530045
PMID: 26070885
ISSN: 1097-6825
CID: 1626762
STIM1 controls T cell-mediated immune regulation and inflammation in chronic infection
Desvignes, Ludovic; Weidinger, Carl; Shaw, Patrick; Vaeth, Martin; Ribierre, Theo; Liu, Menghan; Fergus, Tawania; Kozhaya, Lina; McVoy, Lauren; Unutmaz, Derya; Ernst, Joel D; Feske, Stefan
Chronic infections induce a complex immune response that controls pathogen replication, but also causes pathology due to sustained inflammation. Ca2+ influx mediates T cell function and immunity to infection, and patients with inherited mutations in the gene encoding the Ca2+ channel ORAI1 or its activator stromal interaction molecule 1 (STIM1) are immunodeficient and prone to chronic infection by various pathogens, including Mycobacterium tuberculosis (Mtb). Here, we demonstrate that STIM1 is required for T cell-mediated immune regulation during chronic Mtb infection. Compared with WT animals, mice with T cell-specific Stim1 deletion died prematurely during the chronic phase of infection and had increased bacterial burdens and severe pulmonary inflammation, with increased myeloid and lymphoid cell infiltration. Although STIM1-deficient T cells exhibited markedly reduced IFN-gamma production during the early phase of Mtb infection, bacterial growth was not immediately exacerbated. During the chronic phase, however, STIM1-deficient T cells displayed enhanced IFN-gamma production in response to elevated levels of IL-12 and IL-18. The lack of STIM1 in T cells was associated with impaired activation-induced cell death upon repeated TCR engagement and pulmonary lymphocytosis and hyperinflammation in Mtb-infected mice. Chronically Mtb-infected, STIM1-deficient mice had reduced levels of inducible regulatory T cells (iTregs) due to a T cell-intrinsic requirement for STIM1 in iTreg differentiation and excessive production of IFN-gamma and IL-12, which suppress iTreg differentiation and maintenance. Thus, STIM1 controls multiple aspects of T cell-mediated immune regulation to limit injurious inflammation during chronic infection.
PMCID:4518689
PMID: 25938788
ISSN: 1558-8238
CID: 1569062
Missense mutation in immunodeficient patients shows the multifunctional roles of coiled-coil domain 3 (CC3) in STIM1 activation
Maus, Mate; Jairaman, Amit; Stathopulos, Peter B; Muik, Martin; Fahrner, Marc; Weidinger, Carl; Benson, Melina; Fuchs, Sebastian; Ehl, Stephan; Romanin, Christoph; Ikura, Mitsuhiko; Prakriya, Murali; Feske, Stefan
Store-operated Ca2+ entry (SOCE) is a universal Ca2+ influx pathway that is important for the function of many cell types. SOCE occurs upon depletion of endoplasmic reticulum (ER) Ca2+ stores and relies on a complex molecular interplay between the plasma membrane (PM) Ca2+ channel ORAI1 and the ER Ca2+ sensor stromal interaction molecule (STIM) 1. Patients with null mutations in ORAI1 or STIM1 genes present with severe combined immunodeficiency (SCID)-like disease. Here, we describe the molecular mechanisms by which a loss-of-function STIM1 mutation (R429C) in human patients abolishes SOCE. R429 is located in the third coiled-coil (CC3) domain of the cytoplasmic C terminus of STIM1. Mutation of R429 destabilizes the CC3 structure and alters the conformation of the STIM1 C terminus, thereby releasing a polybasic domain that promotes STIM1 recruitment to ER-PM junctions. However, the mutation also impairs cytoplasmic STIM1 oligomerization and abolishes STIM1-ORAI1 interactions. Thus, despite its constitutive localization at ER-PM junctions, mutant STIM1 fails to activate SOCE. Our results demonstrate multifunctional roles of the CC3 domain in regulating intra- and intermolecular STIM1 interactions that control (i) transition of STIM1 from a quiescent to an active conformational state, (ii) cytoplasmic STIM1 oligomerization, and (iii) STIM1-ORAI1 binding required for ORAI1 activation.
PMCID:4434767
PMID: 25918394
ISSN: 1091-6490
CID: 1551742
Essential role of Orai1 store-operated calcium channels in lactation
Davis, Felicity M; Janoshazi, Agnes; Janardhan, Kyathanahalli S; Steinckwich, Natacha; D'Agostin, Diane M; Petranka, John G; Desai, Pooja N; Roberts-Thomson, Sarah J; Bird, Gary S; Tucker, Deirdre K; Fenton, Suzanne E; Feske, Stefan; Monteith, Gregory R; Putney, James W Jr
The nourishment of neonates by nursing is the defining characteristic of mammals. However, despite considerable research into the neural control of lactation, an understanding of the signaling mechanisms underlying the production and expulsion of milk by mammary epithelial cells during lactation remains largely unknown. Here we demonstrate that a store-operated Ca2+ channel subunit, Orai1, is required for both optimal Ca2+ transport into milk and for milk ejection. Using a novel, 3D imaging strategy, we visualized live oxytocin-induced alveolar unit contractions in the mammary gland, and we demonstrated that in this model milk is ejected by way of pulsatile contractions of these alveolar units. In mammary glands of Orai1 knockout mice, these contractions are infrequent and poorly coordinated. We reveal that oxytocin also induces a large transient release of stored Ca2+ in mammary myoepithelial cells followed by slow, irregular Ca2+ oscillations. These oscillations, and not the initial Ca2+ transient, are mediated exclusively by Orai1 and are absolutely required for milk ejection and pup survival, an observation that redefines the signaling processes responsible for milk ejection. These findings clearly demonstrate that Ca2+ is not just a substrate for nutritional enrichment in mammals but is also a master regulator of the spatiotemporal signaling events underpinning mammary alveolar unit contraction. Orai1-dependent Ca2+ oscillations may represent a conserved language in myoepithelial cells of other secretory epithelia, such as sweat glands, potentially shedding light on other Orai1 channelopathies, including anhidrosis (an inability to sweat).
PMCID:4426473
PMID: 25902527
ISSN: 1091-6490
CID: 1543492
STIM2 enhances receptor-stimulated Ca2+ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum-plasma membrane junctions
Ong, Hwei Ling; de Souza, Lorena Brito; Zheng, Changyu; Cheng, Kwong Tai; Liu, Xibao; Goldsmith, Corinne M; Feske, Stefan; Ambudkar, Indu S
A central component of receptor-evoked Ca(2+) signaling is store-operated Ca(2+) entry (SOCE), which is activated by the assembly of STIM1-Orai1 channels in endoplasmic reticulum (ER) and plasma membrane (PM) (ER-PM) junctions in response to depletion of ER Ca(2+). We report that STIM2 enhances agonist-mediated activation of SOCE by promoting STIM1 clustering in ER-PM junctions at low stimulus intensities. Targeted deletion of STIM2 in mouse salivary glands diminished fluid secretion in vivo and SOCE activation in dispersed salivary acinar cells stimulated with low concentrations of muscarinic receptor agonists. STIM2 knockdown in human embryonic kidney (HEK) 293 cells diminished agonist-induced Ca(2+) signaling and nuclear translocation of NFAT (nuclear factor of activated T cells). STIM2 lacking five carboxyl-terminal amino acid residues did not promote formation of STIM1 puncta at low concentrations of agonist, whereas coexpression of STIM2 with STIM1 mutant lacking the polybasic region STIM1DeltaK resulted in co-clustering of both proteins. Together, our findings suggest that STIM2 recruits STIM1 to ER-PM junctions at low stimulus intensities when ER Ca(2+) stores are mildly depleted, thus increasing the sensitivity of Ca(2+) signaling to agonists.
PMCID:4381927
PMID: 25587190
ISSN: 1937-9145
CID: 1436322
Ion channels in innate and adaptive immunity
Feske, Stefan; Wulff, Heike; Skolnik, Edward Y
Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.
PMCID:4822408
PMID: 25861976
ISSN: 1545-3278
CID: 1528882
CRAC channel deletion in leukemic cells delays progression of leukemia and prolongs survival of mice with notch-1-induced T-cell acute lymphoblastic leukemia [Meeting Abstract]
Fleur-Lominy, S S; Maus, M; Feske, S
Introduction: Ca2+ release-activated Ca2+ (CRAC) channels and their activators stromal interaction molecule (STIM) 1 and 2 are the main regulators of calcium entry in T Lymphocytes through a process known as store-operated Ca2+ entry (SOCE). SOCE results in the activation of calcineurin and other downstream signals with important effects on lymphocyte function. Notch-1 is a protein that is essential for T lymphocyte development. Activating mutations of Notch-1 occurs in about 60% of T-cell acute lymphoblastic leukemia (T-ALL). Introduction of constitutively active forms of Notch-1 in hematopoietic stem cells (HSC) induces T-ALL in mice, providing a useful animal model for the study of leukemia. Methods: To study the role of CRAC channels in T-ALL, we used a mouse model in which c-kit+ HSC from wild-type (WT) and STIM1/STIM2-deficient mice (DKO) were retrovirally transduced with the intracellular Notch-1 domain (ICN1). Transduced HSC were injected into lethally irradiated C57BL/6 mice. Following leukemia development, mice were analyzed for survival and cellular and molecular activity of leukemic cells using various techniques including histology, flow cytometry, RT-PCR and gene array expression analysis. In addition, we used the human T-ALL cell line CEM, in which we introduced a dominant negative form of the CRAC channel subunit ORAI1 (ORAI1-DN) that abolishes CRAC channel function and SOCE, for coculture with the human bone marrow stromal cell line HS5. Results: Mice injected with wild-type HSC transduced with ICN1 succumbed from T-ALL characterized by the presence of CD4+ CD8+ leukemic T cell blasts in the blood, bone marrow and infiltrating organs within 3 to 4 weeks after transfer of HSC. By contrast, mice that had received ICN1 transduced STIM1/2 deficient HSC lived approximately twice as long. The survival benefit was not due to differences in leukemic cell numbers or in proliferation and apoptosis of leukemic cells. Histologies of the bone marrow and spleen of WT leukemic mice showed necrotic lesions, pronounced neutrophil infiltration, the presence of histiocytes engulfing red blood cells (RBC) indicative of severe inflammation. No signs of necrosis and inflammation were present in DKO leukemic mice. Paralleling the inflammation and destruction of the bone marrow environment, WT leukemic mice showed greatly diminished presence of erythroid precursors (EP) in the bone marrow whereas EP frequencies in DKO leukemic mice were similar to those in non-leukemic mice. In line with findings in mice, we observed that human leukemic CEM T cells reduced the viability of HS5 stromal cells in a contact-dependent manner. This cytotoxic effect of CEM cells depended on CRAC channel function as CEM cells transduced with ORAI1-DN had little effect on HS5 viability. Conclusion: These results suggest that CRAC channels are important for the function of T-ALL cells and their effects on the organs they infiltrate, most notably the bone marrow. Inhibition of CRAC channel function prolongs survival of mice with T-ALL potentially by attenuating the cytotoxic effects of leukemic T cells on their environment and on hematopoiesis. Further studies are underway to understand the mechanisms by which CRAC channels regulate leukemic T cell function
EMBASE:72171977
ISSN: 0006-4971
CID: 1946552