Anatomical correlates of directional hypokinesia in patients with hemispatial neglect
Sapir, Ayelet; Kaplan, Julie B; He, Biyu J; Corbetta, Maurizio
Unilateral spatial neglect (neglect) is a syndrome characterized by perceptual deficits that prevent patients from attending and responding to the side of space and of the body opposite a damaged hemisphere (contralesional side). Neglect also involves motor deficits: patients may be slower to initiate a motor response to targets appearing in the left hemispace, even when using their unaffected arm (directional hypokinesia). Although this impairment is well known, its anatomical correlate has not been established. We tested 52 patients with neglect after right hemisphere stroke, and conducted an anatomical analysis on 29 of them to find the anatomical correlate of directional hypokinesia. We found that patients with directional hypokinesia had a lesion involving the ventral lateral putamen, the claustrum, and the white matter underneath the frontal lobe. Most importantly, none of the patients without directional hypokinesia had a lesion in the same region. The localization of neglect's motor deficits to the basal ganglia establishes interesting homologies with animal data; it also suggests that a relative depletion of dopamine in the nigrostriatal pathway on the same side of the lesion may be an important pathophysiological mechanism potentially amenable to intervention.
PMID: 17428982
ISSN: 1529-2401
CID: 1781292
Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect
He, Biyu J; Snyder, Abraham Z; Vincent, Justin L; Epstein, Adrian; Shulman, Gordon L; Corbetta, Maurizio
Spatial neglect is a syndrome following stroke manifesting attentional deficits in perceiving and responding to stimuli in the contralesional field. We examined brain network integrity in patients with neglect by measuring coherent fluctuations of fMRI signals (functional connectivity). Connectivity in two largely separate attention networks located in dorsal and ventral frontoparietal areas was assessed at both acute and chronic stages of recovery. Connectivity in the ventral network, part of which directly lesioned, was diffusely disrupted and showed no recovery. In the structurally intact dorsal network, interhemispheric connectivity in posterior parietal cortex was acutely disrupted but fully recovered. This acute disruption, and disrupted connectivity in specific pathways in the ventral network, strongly correlated with impaired attentional processing across subjects. Lastly, disconnection of the white matter tracts connecting frontal and parietal cortices was associated with more severe neglect and more disrupted functional connectivity. These findings support a network view in understanding neglect.
PMID: 17359924
ISSN: 0896-6273
CID: 1781302