Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:hudsot01

Total Results:

79


Visual Performance of Non-Native Versus Native English Speakers on a Sideline Concussion Screen: An Objective Look at Eye Movement Recordings [Meeting Abstract]

Dempsey, Katharine; Birkemeier, Joel; Hudson, Todd; Dai, Weiwei; Selesnick, Ivan; Hasanaj, Lisena; Balcet, Laura; Galetta, Steven; Rucker, Janet; Rizzo, John-Ross
ISI:000411328607365
ISSN: 0028-3878
CID: 2962122

Objectifying eye movements during rapid number naming: Methodology for assessment of normative data for the King-Devick test

Rizzo, John-Ross; Hudson, Todd E; Dai, Weiwei; Desai, Ninad; Yousefi, Arash; Palsana, Dhaval; Selesnick, Ivan; Balcer, Laura J; Galetta, Steven L; Rucker, Janet C
OBJECTIVE: Concussion is a major public health problem and considerable efforts are focused on sideline-based diagnostic testing to guide return-to-play decision-making and clinical care. The King-Devick (K-D) test, a sensitive sideline performance measure for concussion detection, reveals slowed reading times in acutely concussed subjects, as compared to healthy controls; however, the normal behavior of eye movements during the task and deficits underlying the slowing have not been defined. METHODS: Twelve healthy control subjects underwent quantitative eye tracking during digitized K-D testing. RESULTS: The total K-D reading time was 51.24 (+/-9.7) seconds. A total of 145 saccades (+/-15) per subject were generated, with average peak velocity 299.5 degrees /s and average amplitude 8.2 degrees . The average inter-saccadic interval was 248.4ms. Task-specific horizontal and oblique saccades per subject numbered, respectively, 102 (+/-10) and 17 (+/-4). Subjects with the fewest saccades tended to blink more, resulting in a larger amount of missing data; whereas, subjects with the most saccades tended to make extra saccades during line transitions. CONCLUSIONS: Establishment of normal and objective ocular motor behavior during the K-D test is a critical first step towards defining the range of deficits underlying abnormal testing in concussion. Further, it sets the groundwork for exploration of K-D correlations with cognitive dysfunction and saccadic paradigms that may reflect specific neuroanatomic deficits in the concussed brain.
PMCID:4821571
PMID: 26944155
ISSN: 1878-5883
CID: 2009172

Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation

Hudson, Todd E; Landy, Michael S
A coordinate system is composed of an encoding, defining the dimensions of the space, and an origin. We examine the coordinate encoding used to update motor plans during sensory-motor adaptation to center-out reaches. Adaptation is induced using a novel paradigm in which feedback of reach endpoints is perturbed following a sinewave pattern over trials; the perturbed dimensions of the feedback were the axes of a Cartesian coordinate system in one session and a polar coordinate system in another session. For center-out reaches to randomly chosen target locations, reach errors observed at one target will require different corrections at other targets within Cartesian- and polar-coded systems. The sinewave adaptation technique allowed us to simultaneously adapt both dimensions of each coordinate system (x-y, or reach gain and angle), and identify the contributions of each perturbed dimension by adapting each at a distinct temporal frequency. The efficiency of this technique further allowed us to employ perturbations that were a fraction the size normally used, which avoids confounding automatic adaptive processes with deliberate adjustments made in response to obvious experimental manipulations. Subjects independently corrected errors in each coordinate in both sessions, suggesting that the nervous system encodes both a Cartesian- and polar-coordinate-based internal representation for motor adaptation. The gains and phase lags of the adaptive responses are not readily explained by current theories of sensory-motor adaptation.
PMCID:4883019
PMID: 26762601
ISSN: 1878-5646
CID: 2059752

A Parametric Model for Saccadic Eye Movement [Meeting Abstract]

Dai, Weiwei; Selesnick, Ivan; Rizzo, John-Ross; Rucker, Janet; Hudson, Todd
This paper proposes a parametric model for saccadic waveforms. The model has a small number of parameters, yet it effectively simulates a variety of physiologic saccade properties. In particular, the model reproduces the established relationship between peak saccadic angular velocity and saccadic amplitude (i.e., the saccadic main sequence). The proposed saccadic waveform model can be used in the evaluation and validation of methods for quantitative saccade analysis. For example, we use the proposed saccade model to evaluate four well-known saccade detection algorithms. The comparison indicates the most reliable algorithm is one by Nystrom et al. We further use the proposed saccade model to evaluate the standard technique used for the estimation of peak saccadic angular velocity. The evaluation shows the occurrence of systematic errors. We thus suggest that saccadic angular velocity values determined by the standard technique (low-pass differentiation) should be interpreted and used with caution.
ISI:000400683800013
ISSN: 2372-7241
CID: 2733832

Motor planning poststroke: impairment in vector-coded reach plans

Rizzo, John-Ross; Hudson, Todd E; Abdou, Andrew; Rashbaum, Ira G; George, Ajax E; Raghavan, Preeti; Landy, Michael S
Healthy individuals appear to use both vector-coded reach plans that encode movements in terms of their desired direction and extent, and target-coded reach plans that encode the desired endpoint position of the effector. We examined whether these vector and target reach-planning codes are differentially affected after stroke. Participants with stroke and healthy controls made blocks of reaches that were grouped by target location (providing target-specific practice) and by movement vector (providing vector-specific practice). Reach accuracy was impaired in the more affected arm after stroke, but not distinguishable for target- versus vector-grouped reaches. Reach velocity and acceleration were not only impaired in both the less and more affected arms poststroke, but also not distinguishable for target- versus vector-grouped reaches. As previously reported in controls, target-grouped reaches yielded isotropic (circular) error distributions and vector-grouped reaches yielded error distributions elongated in the direction of the reach. In stroke, the pattern of variability was similar. However, the more affected arm showed less elongated error ellipses for vector-grouped reaches compared to the less affected arm, particularly in individuals with right-hemispheric stroke. The results suggest greater impairment to the vector-coded movement-planning system after stroke, and have implications for the development of personalized approaches to poststroke rehabilitation: Motor learning may be enhanced by practice that uses the preserved code or, conversely, by retraining the more impaired code to restore function.
PMCID:4760446
PMID: 26660558
ISSN: 2051-817x
CID: 1876682

Motor learning reveals the existence of multiple codes for movement planning

Hudson, Todd E; Landy, Michael S
Coordinate systems for movement planning are comprised of an anchor point (e.g., retinocentric coordinates) and a representation (encoding) of the desired movement. One of two representations is often assumed: a final-position code describing desired limb endpoint position and a vector code describing movement direction and extent. The existence of movement-planning systems using both representations is controversial. In our experiments, participants completed reaches grouped by target location (providing practice for a final-position code) and the same reaches grouped by movement vector (providing vector-code practice). Target-grouped reaches resulted in the isotropic (circular) distribution of errors predicted for position-coded reaches. The identical reaches grouped by vector resulted in error ellipses aligned with the reach direction, as predicted for vector-coded reaches. Manipulating only recent movement history to provide better learning for one or the other movement code, we provide definitive evidence that both movement representations are used in the identical task.
PMCID:3545118
PMID: 22933728
ISSN: 1522-1598
CID: 1654262

Measuring adaptation with a sinusoidal perturbation function

Hudson, Todd E; Landy, Michael S
We examine the possibility that sensory and motor adaptation may be induced via a sinusoidally incremented perturbation. This sinewave adaptation method provides superior data for fitting a parametric model than when using the standard step-function method of perturbation, due to the relative difficulty of fitting a decaying exponential vs. a sinusoid. Using both experimental data and simulations, we demonstrate the difficulty of detecting the presence of motor adaptation using a step-function perturbation, compared to detecting motor adaptation using our sinewave perturbation method.
PMCID:3612424
PMID: 22565135
ISSN: 1872-678x
CID: 1654272

Adaptation to sensory-motor reflex perturbations is blind to the source of errors

Hudson, Todd E; Landy, Michael S
In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.
PMCID:3267976
PMID: 22228797
ISSN: 1534-7362
CID: 1654282

Speeded reaching movements around invisible obstacles

Hudson, Todd E; Wolfe, Uta; Maloney, Laurence T
We analyze the problem of obstacle avoidance from a Bayesian decision-theoretic perspective using an experimental task in which reaches around a virtual obstacle were made toward targets on an upright monitor. Subjects received monetary rewards for touching the target and incurred losses for accidentally touching the intervening obstacle. The locations of target-obstacle pairs within the workspace were varied from trial to trial. We compared human performance to that of a Bayesian ideal movement planner (who chooses motor strategies maximizing expected gain) using the Dominance Test employed in Hudson et al. (2007). The ideal movement planner suffers from the same sources of noise as the human, but selects movement plans that maximize expected gain in the presence of that noise. We find good agreement between the predictions of the model and actual performance in most but not all experimental conditions.
PMCID:3447970
PMID: 23028276
ISSN: 1553-7358
CID: 1654292

Compensation for changing motor uncertainty

Hudson, Todd E; Tassinari, Hadley; Landy, Michael S
When movement outcome differs consistently from the intended movement, errors are used to correct subsequent movements (e.g., adaptation to displacing prisms or force fields) by updating an internal model of motor and/or sensory systems. Here, we examine changes to an internal model of the motor system under changes in the variance structure of movement errors lacking an overall bias. We introduced a horizontal visuomotor perturbation to change the statistical distribution of movement errors anisotropically, while monetary gains/losses were awarded based on movement outcomes. We derive predictions for simulated movement planners, each differing in its internal model of the motor system. We find that humans optimally respond to the overall change in error magnitude, but ignore the anisotropy of the error distribution. Through comparison with simulated movement planners, we found that aimpoints corresponded quantitatively to an ideal movement planner that updates a strictly isotropic (circular) internal model of the error distribution. Aimpoints were planned in a manner that ignored the direction-dependence of error magnitudes, despite the continuous availability of unambiguous information regarding the anisotropic distribution of actual motor errors.
PMCID:2973820
PMID: 21079679
ISSN: 1553-7358
CID: 1654302