Searched for: in-biosketch:yes
person:jonesd28
Hydroxywarfarin metabolites potently inhibit CYP2C9 metabolism of S-warfarin
Jones, Drew R; Kim, So-Young; Guderyon, Michael; Yun, Chul-Ho; Moran, Jeffery H; Miller, Grover P
Coumadin (R/S-warfarin) anticoagulant therapy poses a risk to over 50 million Americans, in part due to interpersonal variation in drug metabolism. Consequently, it is important to understand how metabolic capacity is influenced among patients. Cytochrome P450s (P450 or CYP for a specific isoform) catalyze the first major step in warfarin metabolism to generate five hydroxywarfarins for each drug enantiomer. These primary metabolites are thought to reach at least 5-fold higher levels in plasma than warfarin. We hypothesized that hydroxywarfarins inhibit the hydroxylation of warfarin by CYP2C9, thereby limiting enzymatic capacity toward S-warfarin. To test this hypothesis, we investigated the ability of all five racemic hydroxywarfarins to block CYP2C9 activity toward S-warfarin using recombinant enzyme and human liver microsomes. We initially screened for the inhibition of CYP2C9 by hydroxywarfarins using a P450-Glo assay to determine IC(50) values for each hydroxywarfarin. Compared to the substrate, CYP2C9 bound its hydroxywarfarin products with less affinity but retained high affinity for 10- and 4'-hydroxywarfarins, products from CYP3A4 reactions. S-Warfarin steady-state inhibition studies with recombinant CYP2C9 and pooled human liver microsomes confirmed that hydroxywarfarin products from CYP reactions possess the capacity to competitively inhibit CYP2C9 with biologically relevant inhibition constants. Inhibition of CYP2C9 by 7-hydroxywarfarin may be significant given its abundance in human plasma, despite its weak affinity for the enzyme. 10-Hydroxywarfarin, which has been reported as the second most abundant plasma metabolite, was the most potent inhibitor of CYP2C9, displaying approximately 3-fold higher affinity than S-warfarin. These results indicate that hydroxywarfarin metabolites produced by CYP2C9 and other CYPs may limit metabolic capacity toward S-warfarin through competitive inhibition. Subsequent processing of hydroxywarfarins to secondary metabolites, such as hydroxywarfarin glucuronides, could suppress product feedback inhibition, and therefore could play an important role in the modulation of metabolic pathways governing warfarin inactivation and elimination.
PMCID:5406237
PMID: 20429590
ISSN: 1520-5010
CID: 2413472
Warfarin and UDP-glucuronosyltransferases: writing a new chapter of metabolism
Jones, Drew R; Moran, Jeffery H; Miller, Grover P
The widely prescribed anticoagulant, Coumadin (racemic R/S-warfarin), Bristol-Myers Squibb Company, Clinton, NY has a narrow therapeutic range and wide interindividual response due, in part, to drug metabolism. Early identification of hydroxywarfarins (OHWARs), especially S-7-OHWAR, as major metabolites fostered studies characterizing cytochrome P450s responsible for those reactions. Nevertheless, phase II metabolism by sulfotransferases and, especially uridine diphosphate (UDP)-glucuronosyltransferases (UGTs), marks the next chapter in warfarin inactivation and clearance. Rodents converted OHWARs to glucuronides (O-GLUC), including high levels of 4'-, 7-, and 8-O-GLUC. Similarly, humans generated significant levels of glucuronides following treatment with warfarin. 7-O-GLUC was a major metabolite, while 6- and 8-O-GLUC were minor ones. Surprisingly, warfarin glucuronidation accounted for up to 13% of metabolites. This capacity in humans derives from several UGTs, as shown by studies with recombinant enzymes and racemic warfarin and OHWARs. 7-OHWAR was a high-affinity substrate for UGT1A1, compared to other UGTs. UGT1A1 and UGT1A10 also glucuronidated 6-OHWAR. Of five UGT1A enzymes, UGT1A10 was approximately 7-fold more efficient than the rest. Broad substrate specificity for UGT1A10 derives, in part, from an active site-binding motif, specifically F90-M91-V92-F93. Unlike glucuronidation, less is known about sulfonation of warfarin and its metabolites, except that low capacities are shown by rats and, possibly, humans. Collectively, phase I and II metabolic steps create pathways for inactivating and eliminating warfarin that require elucidation. These findings will ultimately enrich our understanding of warfarin metabolism and facilitate the interpreting of metabolic profiles of patients. This knowledge will possibly avoid complications during warfarin therapy related to metabolism by personalizing therapy for the patient.
PMID: 19788348
ISSN: 1097-9883
CID: 2413462
Separation and glucuronidation of R- and S-hydroxywarfarins by human recombinant UDP-glucuronosyltransferases (UGTs) [Meeting Abstract]
Moran, Jeffery H; Jones, Drew R; Bratton, Stacie; Gallus-Zawada, Anna; Pack, Lindsay M; Miller, Grover P; Radominska-Pandya, Anna
ISI:000280165300071
ISSN: 0360-2532
CID: 2413432
LC-MS/MS Assessment of Phase I Hydroxylation and Phase II Conjugation to the Warfarin Metabolome in Human Urine [Meeting Abstract]
Jones, Drew R; Sullivan, Shane Z; Radominska-Pandya, Anna; Moran, Jeffery H; Miller, Grover P
ISI:000269483300042
ISSN: 0360-2532
CID: 2413422
Assessing cytochrome P450 and UDP-glucuronosyltransferase contributions to warfarin metabolism in humans
Miller, Grover P; Jones, Drew R; Sullivan, Shane Z; Mazur, Anna; Owen, Suzanne N; Mitchell, Neil C; Radominska-Pandya, Anna; Moran, Jeffery H
As a step toward exploring a targeted metabolomics approach to personalized warfarin (Coumadin) therapy, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method capable of quantifying specific enantiomeric (R and S) contributions of warfarin (WAR) and the corresponding hydroxywarfarins (OH-WAR) and glucuronides (-GLUC) generated by cytochrome P450s (CYP) and UDP-glucuronosyltransferases (UGTs), respectively. Evaluation of quality control samples and three commercially available human samples showed that our analytical approach has the ability to measure 24 unique WAR metabolites in human urine. Evaluation of the human data also provides new insights for evaluating WAR toxicity and begins characterizing important UGT metabolic pathways responsible for WAR detoxification. Data revealed the significance of specific metabolites among patients and the corresponding enzymatic capacity to generate these compounds, including the first report of direct WAR glucuronidation. On the basis of total OH-WAR levels, (S)-7-OH-WAR was the predominant metabolite indicating the significance of CYP2C9 in WAR metabolism, although other CYP2C enzymes also contributed to clearance of this isomer. (R)-WAR hydroxylation to OH-WARs was more diverse among the patients as reflected in varying contributions of CYP1A2 and multiple CYP2C enzymes. There was wide variation in the glucuronidation of WAR and the OH-WARs with respect to the compounds and patients. 6- and 7-OH-WAR were primarily (>70%) excreted as glucuronides unlike 4'-OH-WAR and 8-OH-WAR. For all patients, UGT1A1 is likely responsible for 6-O-GLUC production, although UGT1A10 may also contribute in one patient. 7-O-GLUC levels reflected contributions from potentially five different UGT1A enzymes. In all cases, WAR, 4'-OH-WAR, 8-OH-WAR, and the corresponding glucuronides were minor metabolites with respect to the others. Taken together, these data suggest that both P450 and UGT reactions contribute to the generation of excretable products in human urine, thereby generating complex metabolic networks.
PMCID:2819755
PMID: 19408964
ISSN: 1520-5010
CID: 2413452