Searched for: in-biosketch:yes
person:morleg01
Null mutation of connexin43 causes slow propagation of ventricular activation in the late stages of mouse embryonic development
Vaidya D; Tamaddon HS; Lo CW; Taffet SM; Delmar M; Morley GE; Jalife J
Connexin43 (Cx43) is the principal connexin isoform in the mouse ventricle, where it is thought to provide electrical coupling between cells. Knocking out this gene results in anatomic malformations that nevertheless allow for survival through early neonatal life. We examined electrical wave propagation in the left (LV) and right (RV) ventricles of isolated Cx43 null mutated (Cx43(-/-)), heterozygous (Cx43(+/)(-)), and wild-type (WT) embryos using high-resolution mapping of voltage-sensitive dye fluorescence. Consistent with the compensating presence of the other connexins, no reduction in propagation velocity was seen in Cx43(-/-) ventricles at postcoital day (dpc) 12.5 compared with WT or Cx43(+/)(-) ventricles. A gross reduction in conduction velocity was seen in the RV at 15.5 dpc (in cm/second, mean [1 SE confidence interval], WT 9.9 [8.7 to 11.2], Cx43(+/)(-) 9.9 [9.0 to 10.9], and Cx43(-/-) 2.2 [1.8 to 2.7; P<0.005]) and in both ventricles at 17.5 dpc (in RV, WT 8.4 [7.6 to 9.3], Cx43(+/)(-) 8.7 [8.1 to 9.3], and Cx43(-/-) 1.1 [0.1 to 1.3; P<0.005]; in LV, WT 10.1 [9.4 to 10.7], Cx43(+/)(-) 8.3 [7.8 to 8.9], and Cx43(-/-) 1.7 [1.3 to 2.1; P<0.005]) corresponding with the downregulation of Cx40. Cx40 and Cx45 mRNAs were detectable in ventricular homogenates even at 17.5 dpc, probably accounting for the residual conduction function. Neonatal knockout hearts were arrhythmic in vivo as well as ex vivo. This study demonstrates the contribution of Cx43 to the electrical function of the developing mouse heart and the essential role of this gene in maintaining heart rhythm in postnatal life
PMID: 11397787
ISSN: 1524-4571
CID: 32706
Visualization and functional characterization of the developing murine cardiac conduction system
Rentschler S; Vaidya DM; Tamaddon H; Degenhardt K; Sassoon D; Morley GE; Jalife J; Fishman GI
The cardiac conduction system is a complex network of cells that together orchestrate the rhythmic and coordinated depolarization of the heart. The molecular mechanisms regulating the specification and patterning of cells that form this conductive network are largely unknown. Studies in avian models have suggested that components of the cardiac conduction system arise from progressive recruitment of cardiomyogenic progenitors, potentially influenced by inductive effects from the neighboring coronary vasculature. However, relatively little is known about the process of conduction system development in mammalian species, especially in the mouse, where even the histological identification of the conductive network remains problematic. We have identified a line of transgenic mice where lacZ reporter gene expression delineates the developing and mature murine cardiac conduction system, extending proximally from the sinoatrial node to the distal Purkinje fibers. Optical mapping of cardiac electrical activity using a voltage-sensitive dye confirms that cells identified by the lacZ reporter gene are indeed components of the specialized conduction system. Analysis of lacZ expression during sequential stages of cardiogenesis provides a detailed view of the maturation of the conductive network and demonstrates that patterning occurs surprisingly early in embryogenesis. Moreover, optical mapping studies of embryonic hearts demonstrate that a murine His-Purkinje system is functioning well before septation has completed. Thus, these studies describe a novel marker of the murine cardiac conduction system that identifies this specialized network of cells throughout cardiac development. Analysis of lacZ expression and optical mapping data highlight important differences between murine and avian conduction system development. Finally, this line of transgenic mice provides a novel tool for exploring the molecular circuitry controlling mammalian conduction system development and should be invaluable in studies of developmental mutants with potential structural or functional conduction system defects
PMCID:3630466
PMID: 11311159
ISSN: 0950-1991
CID: 32707
Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43
Gutstein DE; Morley GE; Tamaddon H; Vaidya D; Schneider MD; Chen J; Chien KR; Stuhlmann H; Fishman GI
Cardiac arrhythmia is a common and often lethal manifestation of many forms of heart disease. Gap junction remodeling has been postulated to contribute to the increased propensity for arrhythmogenesis in diseased myocardium, although a causative role in vivo remains speculative. By generating mice with cardiac-restricted knockout of connexin43 (Cx43), we have circumvented the perinatal lethal developmental defect associated with germline inactivation of this gap junction channel gene and uncovered an essential role for Cx43 in the maintenance of electrical stability. Mice with cardiac-specific loss of Cx43 have normal heart structure and contractile function, and yet they uniformly (28 of 28 conditional Cx43 knockout mice observed) develop sudden cardiac death from spontaneous ventricular arrhythmias by 2 months of age. Optical mapping of the epicardial electrical activation pattern in Cx43 conditional knockout mice revealed that ventricular conduction velocity was significantly slowed by up to 55% in the transverse direction and 42% in the longitudinal direction, resulting in an increase in anisotropic ratio compared with control littermates (2.1+/-0.13 versus 1.66+/-0.06; P:<0.01). This novel genetic murine model of primary sudden cardiac death defines gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate
PMCID:3630465
PMID: 11179202
ISSN: 1524-4571
CID: 27670
Understanding conduction of electrical impulses in the mouse heart using high-resolution video imaging technology
Morley GE; Vaidya D
The conduction of electrical impulses in the heart depends on the ability to efficiently transfer excitatory current between individual myocytes. Several recent studies have focused on the use of optical mapping techniques to determine the electrophysiological consequences and the proarrhythmic effects of reducing intercellular coupling in newly developed connexin knockout mice. This work has begun to unravel important questions regarding the role of connexins in intercellular coupling and propagation of electrical impulses in the heart. The purpose of this review is to discuss the techniques and unique issues involved in imaging electrical wave propagation in the heart. In addition, we will review recent experimental studies that address the role of intercellular communication in the development of cardiac arrhythmias
PMID: 11180617
ISSN: 1059-910x
CID: 32708
Conditional gene targeting of connexin43: exploring the consequences of gap junction remodeling in the heart
Gutstein DE; Morley GE; Fishman GI
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction
PMID: 12064616
ISSN: 1541-9061
CID: 32705
High-resolution optical mapping of the right bundle branch in connexin40 knockout mice reveals slow conduction in the specialized conduction system
Tamaddon HS; Vaidya D; Simon AM; Paul DL; Jalife J; Morley GE
Connexin40 (Cx40) is a major gap junction protein that is expressed in the His-Purkinje system and thought to be a critical determinant of cell-to-cell communication and conduction of electrical impulses. Video maps of the ventricular epicardium and the proximal segment of the right bundle branch (RBB) were obtained using a high-speed CCD camera while simultaneously recording volume-conducted ECGs. In Cx40(-/-) mice, the PR interval was prolonged (47.4+/-1.4 in wild-type [WT] [n=6] and 57.5+/-2.8 in Cx40(-/-) [n=6]; P<0.01). WT ventricular epicardial activation was characterized by focused breakthroughs that originated first on the right ventricle (RV) and then the left ventricle (LV). In Cx40(-/-) hearts, the RV breakthrough occurred after the LV breakthrough. Additionally, Cx40(-/-) mice showed RV breakthrough times that were significantly delayed with respect to QRS complex onset (3.7+/-0.7 ms in WT [n=6] and 6.5+/-0.7 ms in Cx40(-/-) [n=6]; P<0.01), whereas LV breakthrough times did not change. Conduction velocity measurements from optical mapping of the RBB revealed slow conduction in Cx40(-/-) mice (74.5+/-3 cm/s in WT [n=7] and 43.7+/-6 cm/s in Cx40(-/-) [n=7]; P<0.01). In addition, simultaneous ECG records demonstrated significant delays in Cx40(-/-) RBB activation time with respect to P time (P-RBB time; 41.6+/-1.9 ms in WT [n=7] and 55.1+/-1.3 ms in [n=7]; P<0.01). These data represent the first direct demonstration of conduction defects in the specialized conduction system of Cx40(-/-) mice and provide new insight into the role of gap junctions in cardiac impulse propagation
PMID: 11073890
ISSN: 1524-4571
CID: 32709
Cardiac gap junction remodeling by stretch: is it a good thing? [Comment]
Morley GE; Jalife J
PMID: 10948059
ISSN: 0009-7330
CID: 32710
Early onset heart failure in transgenic mice with dilated cardiomyopathy
Hall DG; Morley GE; Vaidya D; Ard M; Kimball TR; Witt SA; Colbert MC
In children, dilated cardiomyopathy is due to a variety of etiologies and usually carries a grave prognosis. The purpose of the present study was to carefully follow the progression of events leading to cardiac dilatation and congestive heart failure in a dilated cardiomyopathy model in neonatal and juvenile mice. These initial steps are often not well characterized. Furthermore, the loss of gap junctions and reduced electrical coupling of cardiomyocytes frequently found in human cardiomyopathies are also observed in these early stages. By 2 wk of age, molecular markers associated with hypertrophy were already altered. Cardiomyocyte hypertrophy, reduced connexin43 expression, and decreased conduction velocity were apparent by 4 wk, before overt cardiac dysfunction (decreased shortening fraction and chamber remodeling) that was not present until 12 wk of age. Our results show that in this model cardiomyopathic changes are present by 2 wk after birth and progress rapidly during the subsequent 2 postnatal weeks. Combined with the observations of other models of heart disease, we suggest that the first 2 wk of postnatal life are absolutely critical for normal cardiac development, and events that perturb homeostasis during this period determine whether the heart will continue to develop normally. These animals exhibit early symptoms of disease including reduced connexin43 and conduction defects before impaired cardiac function and demonstrate for the first time a temporal association between decreased connexin43 levels and the initiation of a contractility deficit that ends in heart failure
PMID: 10879798
ISSN: 0031-3998
CID: 32711
Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping [Comment]
Morley GE; Vaidya D; Jalife J
PMID: 10749364
ISSN: 1045-3873
CID: 32712
Connexins and impulse propagation in the mouse heart
Jalife J; Morley GE; Vaidya D
Gap junction channels are essential for normal cardiac impulse propagation. Three gap junction proteins, known as connexins, are expressed in the heart: Cx40, Cx43, and Cx45. Each of these proteins forms channels with unique biophysical and electrophysiologic properties, as well as spatial distribution of expression throughout the heart. However, the specific functional role of the individual connexins in normal and abnormal propagation is unknown. The availability of genetically engineered mouse models, together with new developments in optical mapping technology, makes it possible to integrate knowledge about molecular mechanisms of intercellular communication and its regulation with our growing understanding of the microscopic and global dynamics of electrical impulse propagation during normal and abnormal cardiac rhythms. This article reviews knowledge on the mechanisms of cardiac impulse propagation, with particular focus on the role of cardiac connexins in electrical communication between cells. It summarizes results of recent studies on the electrophysiologic consequences of defects in the functional expression of specific gap junction channels in mice lacking either the Cx43 or Cx40 gene. It also reviews data obtained in a transgenic mouse model in which cell loss and remodeling of gap junction distribution leads to increased susceptibility to arrhythmias and sudden cardiac death. Overall, the results demonstrate that these are potentially powerful strategies for studying fundamental mechanisms of cardiac electrical activity and for testing the hypothesis that certain cardiac arrhythmias involve gap junction or other membrane channel dysfunction. These new approaches, which permit one to manipulate electrical wave propagation at the molecular level, should provide new insight into the detailed mechanisms of initiation, maintenance, and termination of cardiac arrhythmias, and may lead to more effective means to treat arrhythmias and prevent sudden cardiac death
PMID: 10636196
ISSN: 1045-3873
CID: 32713