Searched for: in-biosketch:yes
person:neelb01
SHP2 Inhibition Prevents Adaptive Resistance to MEK inhibitors in Multiple Cancer Models
Fedele, Carmine; Ran, Hao; Diskin, Brian; Wei, Wei; Jen, Jayu; Geer, Mitchell J; Araki, Kiyomi; Ozerdem, Ugur; Simeone, Diane M; Miller, George; Neel, Benjamin G; Tang, Kwan Ho
Adaptive resistance to MEK inhibitors (MEK-Is) typically occurs via induction of genes for different receptor tyrosine kinases (RTKs) and/or their ligands, even in tumors of the same histotype, making combination strategies challenging. SHP2 (PTPN11) is required for RAS/ERK pathway activation by most RTKs, and might provide a common resistance node. We found that combining the SHP2 inhibitor SHP099 with a MEK-I inhibited the proliferation of multiple cancer cell lines in vitro. PTPN11 knockdown/MEK-I treatment had similar effects, while expressing SHP099 binding-defective PTPN11 mutants conferred resistance, demonstrating that SHP099 is on-target. SHP099/trametinib was highly efficacious in xenograft and/or genetically engineered models of KRAS-mutant pancreas, lung, and ovarian cancer and in wild type RAS-expressing triple negative breast cancer. SHP099 inhibited activation of KRAS mutants with residual GTPase activity, impeded SOS/RAS/MEK/ERK1/2 reactivation in response to MEK-Is and blocked ERK1/2-dependent transcriptional programs. We conclude that SHP099/MEK-I combinations could have therapeutic utility in multiple malignancies.
PMID: 30045908
ISSN: 2159-8290
CID: 3216482
Off-target inhibition by active site-targeting SHP2 inhibitors
Tsutsumi, Ryouhei; Ran, Hao; Neel, Benjamin G
Due to the involvement of SHP2 (SH2 domain-containing protein-tyrosine phosphatase) in human disease, including Noonan syndrome and cancer, several inhibitors targeting SHP2 have been developed. Here, we report that the commonly used SHP2 inhibitor NSC-87877 does not exhibit robust inhibitory effects on growth factor-dependent MAPK (mitogen-activated protein kinase) pathway activation and that the recently developed active site-targeting SHP2 inhibitors IIB-08, 11a-1, and GS-493 show off-target effects on ligand-evoked activation/trans-phosphorylation of the PDGFRβ (platelet-derived growth factor receptor β). GS-493 also inhibits purified human PDGFRβ and SRC in vitro, whereas PDGFRβ inhibition by IIB-08 and 11a-1 occurs only in the cellular context. Our results argue for extreme caution in inferring specific functions for SHP2 based on studies using these inhibitors.
PMCID:6120237
PMID: 30186742
ISSN: 2211-5463
CID: 3271402
Vitamin C in Stem Cell Reprogramming and Cancer
Cimmino, Luisa; Neel, Benjamin G; Aifantis, Iannis
Vitamin C is an essential dietary requirement for humans. In addition to its known role as an antioxidant, vitamin C is a cofactor for Fe2+- and α-ketoglutarate-dependent dioxygenases (Fe2+/α-KGDDs) which comprise a large number of diverse enzymes, including collagen prolyl hydroxylases and epigenetic regulators of histone and DNA methylation. Vitamin C can modulate embryonic stem cell (ESC) function, enhance reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs), and hinder the aberrant self-renewal of hematopoietic stem cells (HSCs) through its ability to enhance the activity of either Jumonji C (JmjC) domain-containing histone demethylases or ten-eleven translocation (TET) DNA hydroxylases. Given that epigenetic dysregulation is a known driver of malignancy, vitamin C may play a novel role as an epigenetic anticancer agent.
PMCID:6102081
PMID: 29724526
ISSN: 1879-3088
CID: 3163672
Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth
Tajan, Mylène; Pernin-Grandjean, Julie; Beton, Nicolas; Gennero, Isabelle; Capilla, Florence; Neel, Benjamin G; Araki, Toshiyuki; Valet, Philippe; Tauber, Maithé; Salles, Jean-Pierre; Yart, Armelle; Edouard, Thomas
Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins.In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.
PMCID:6005060
PMID: 29659837
ISSN: 1460-2083
CID: 3042982
A Genomically Characterized Collection of High-Grade Serous Ovarian Cancer Xenografts for Preclinical Testing
Cybulska, Paulina; Stewart, Jocelyn M; Sayad, Azin; Virtanen, Carl; Shaw, Patricia A; Clarke, Blaise; Stickle, Natalie; Bernardini, Marcus Q; Neel, Benjamin G
High-grade serous ovarian cancer (HGSC) is the leading cause of morbidity and mortality from gynecologic malignancy. Overall survival remains low, due to the nearly ubiquitous emergence of platinum-resistance and the paucity of effective next-line treatments. Current cell culture-based models show limited similarity to HGSC and are therefore unreliable predictive models for pre-clinical evaluation of investigational drugs. This deficiency could help explain the low overall rate of successful drug development and the decades of largely unchanged approaches to HGSC treatment. We used gene expression, copy number variation, and exome sequencing analyses to credential HGSC patient-derived xenografts (PDXs) as effective pre-clinical models that recapitulate the features of human HGSC. Mice bearing PDXs for their response to standard-of-care carboplatin therapy were also treated. PDXs showed similar sensitivity to carboplatin as the patient's tumor at the time of sampling. PDXs also recapitulated the diversity of genomic alterations (copy number variation and mutation profiles) previously described in large data sets profiling HGSC. Furthermore, mRNA profiling showed that they represent all HGSC subtypes with the exception of the immunoreactive group. Credentialing of PDX models of HGSC should aid progress in HGSC research by providing improved pre-clinical models of HGSC that can be used to test novel targets and more accurately evaluate their likelihood of success.
PMID: 29458007
ISSN: 1525-2191
CID: 2963592
Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner
Zheng, Hong; Yu, Wen-Mei; Waclaw, Ronald R; Kontaridis, Maria I; Neel, Benjamin G; Qu, Cheng-Kui
Catalytically activating mutations inPtpn11, which encodes the protein tyrosine phosphatase SHP2, cause 50% of Noonan syndrome (NS) cases, whereas inactivating mutations inPtpn11are responsible for nearly all cases of the similar, but distinct, developmental disorder Noonan syndrome with multiple lentigines (NSML; formerly called LEOPARD syndrome). However, both types of disease mutations are gain-of-function mutations because they cause SHP2 to constitutively adopt an open conformation. We found that the catalytic activity of SHP2 was required for the pathogenic effects of gain-of-function, disease-associated mutations on the development of hydrocephalus in the mouse. Targeted pan-neuronal knockin of aPtpn11allele encoding the active SHP2 E76K mutant resulted in hydrocephalus due to aberrant development of ependymal cells and their cilia. These pathogenic effects of the E76K mutation were suppressed by the additional mutation C459S, which abolished the catalytic activity of SHP2. Moreover, ependymal cells in NSML mice bearing the inactive SHP2 mutant Y279C were also unaffected. Mechanistically, the SHP2 E76K mutant induced developmental defects in ependymal cells by enhancing dephosphorylation and inhibition of the transcription activator STAT3. Whereas STAT3 activity was reduced inPtpn11
PMCID:5915342
PMID: 29559584
ISSN: 1937-9145
CID: 3000292
A ERK/RSK-mediated negative feedback loop regulates M-CSF-evoked PI3K/AKT activation in macrophages
Wang, Lijun; Iorio, Caterina; Yan, Kevin; Yang, Howard; Takeshita, Sunao; Kang, Sumin; Neel, Benjamin G; Yang, Wentian
Activation of the RAS/ERK and its downstream signaling components is essential for growth factor-induced cell survival, proliferation, and differentiation. The Src homology-2 domain containing protein tyrosine phosphatase 2 (SHP2), encoded by protein tyrosine phosphatase, non-receptor type 11 (Ptpn11), is a positive mediator required for most, if not all, receptor tyrosine kinase-evoked RAS/ERK activation, but differentially regulates the PI3K/AKT signaling cascade in various cellular contexts. The precise mechanisms underlying the differential effects of SHP2 deficiency on the PI3K pathway remain unclear. We found that mice with myelomonocytic cell-specific [Tg(LysM-Cre);Ptpn11fl/fl mice] Ptpn11 deficiency exhibit mild osteopetrosis. SHP2-deficient bone marrow macrophages (BMMs) showed decreased proliferation in response to M-CSF and decreased osteoclast generation. M-CSF-evoked ERK1/2 activation was decreased, whereas AKT activation was enhanced in SHP2-deficient BMMs. ERK1/2, via its downstream target RSK2, mediates this negative feedback by negatively regulating phosphorylation of M-CSF receptor at Tyr721 and, consequently, its binding to p85 subunit of PI3K and PI3K activation. Pharmacologic inhibition of RSK or ERK phenotypically mimics the signaling defects observed in SHP2-deficient BMMs. Furthermore, this increase in PI3K/AKT activation enables BMM survival in the setting of SHP2 deficiency.-Wang, L., Iorio, C., Yan, K., Yang, H., Takeshita, S., Kang, S., Neel, B.G., Yang, W. An ERK/RSK-mediated negative feedback loop regulates M-CSF-evoked PI3K/AKT activation in macrophages.
PMCID:5888401
PMID: 29046360
ISSN: 1530-6860
CID: 2743062
Affinity purification mass spectrometry analysis of PD-1 uncovers SAP as a new checkpoint inhibitor
Peled, Michael; Tocheva, Anna S; Sandigursky, Sabina; Nayak, Shruti; Philips, Elliot A; Nichols, Kim E; Strazza, Marianne; Azoulay-Alfaguter, Inbar; Askenazi, Manor; Neel, Benjamin G; Pelzek, Adam J; Ueberheide, Beatrix; Mor, Adam
Programmed cell death-1 (PD-1) is an essential inhibitory receptor in T cells. Antibodies targeting PD-1 elicit durable clinical responses in patients with multiple tumor indications. Nevertheless, a significant proportion of patients do not respond to anti-PD-1 treatment, and a better understanding of the signaling pathways downstream of PD-1 could provide biomarkers for those whose tumors respond and new therapeutic approaches for those whose tumors do not. We used affinity purification mass spectrometry to uncover multiple proteins associated with PD-1. Among these proteins, signaling lymphocytic activation molecule-associated protein (SAP) was functionally and mechanistically analyzed for its contribution to PD-1 inhibitory responses. Silencing of SAP augmented and overexpression blocked PD-1 function. T cells from patients with X-linked lymphoproliferative disease (XLP), who lack functional SAP, were hyperresponsive to PD-1 signaling, confirming its inhibitory role downstream of PD-1. Strikingly, signaling downstream of PD-1 in purified T cell subsets did not correlate with PD-1 surface expression but was inversely correlated with intracellular SAP levels. Mechanistically, SAP opposed PD-1 function by acting as a molecular shield of key tyrosine residues that are targets for the tyrosine phosphatase SHP2, which mediates PD-1 inhibitory properties. Our results identify SAP as an inhibitor of PD-1 function and SHP2 as a potential therapeutic target in patients with XLP.
PMCID:5776966
PMID: 29282323
ISSN: 1091-6490
CID: 2895842
Deficiency in protein tyrosine phosphatase PTP1B shortens lifespan and leads to development of acute leukemia
Le Sommer, Samantha; Morrice, Nicola; Pesaresi, Martina; Thompson, Dawn; Vickers, Mark A; Murray, Graeme I; Mody, Nimesh; Neel, Benjamin G; Bence, Kendra K; Wilson, Heather M; Delibegovic, Mirela
Protein tyrosine phosphatase PTP1B is a critical regulator of signaling pathways controlling metabolic homeostasis, cell proliferation and immunity. In this study, we report that global or myeloid-specific deficiency of PTP1B in mice decreases lifespan. We demonstrate that myeloid-specific deficiency of PTP1B is sufficient to promote the development of acute myeloid leukemia (AML). LysM-PTP1B-/- mice lacking PTP1B in the innate myeloid cell lineage displayed a dysregulation of bone marrow cells with a rapid decline in population at midlife and a concomitant increase in peripheral blood blast cells. This phenotype manifested further with extramedullary tumors, hepatic macrophage infiltration and metabolic reprogramming, suggesting increased hepatic lipid metabolism prior to overt tumor development. Mechanistic investigations revealed an increase in anti-inflammatory M2 macrophage responses in liver and spleen, as associated with increased expression of arginase I and the cytokines IL-10 and IL-4. We also documented STAT3 hypersphosphorylation and signaling along with JAK-dependent upregulation of anti-apoptotic proteins Bcl2 and BclXL. Our results establish a tumor suppressor role for PTP1B in the myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia.
PMCID:5756472
PMID: 29122767
ISSN: 1538-7445
CID: 2772932
SHP2 is required for BCR-ABL1-induced hematologic neoplasia
Gu, S; Sayad, A; Chan, G; Yang, W; Lu, Z; Virtanen, C; Van Etten, R A; Neel, B G
BCR-ABL1-targeting tyrosine kinase inhibitors (TKIs) have revolutionized treatment of Philadelphia chromosome-positive (Ph+) hematologic neoplasms. Nevertheless, acquired TKI resistance remains a major problem in chronic myeloid leukemia (CML), and TKIs are less effective against Ph+B-cell acute lymphoblastic leukemia (B-ALL). GAB2, a scaffolding adaptor that binds and activates SHP2, is essential for leukemogenesis by BCR-ABL1, and a GAB2 mutant lacking SHP2 binding cannot mediate leukemogenesis. Using a genetic loss-of-function approach and bone marrow transplantation models for CML and BCR-ABL1+B-ALL, we show that SHP2 is required for BCR-ABL1-evoked myeloid and lymphoid neoplasia. Ptpn11 deletion impairs initiation and maintenance of CML-like myeloproliferative neoplasm, and compromises induction of BCR-ABL1+B-ALL. SHP2, and specifically, its SH2 domains, PTP activity and C-terminal tyrosines, are essential for BCR-ABL1+, but not WT, pre-B-cell proliferation. The mitogen-activated protein kinase kinase (MEK) / extracellular signal-regulated kinase (ERK) pathway is regulated by SHP2 in WT and BCR-ABL1+pre-B cells, but is only required for the proliferation of BCR-ABL1+cells. SHP2 is required for SRC family kinase (SFK) activation only in BCR-ABL1+pre-B cells. RNAseq reveals distinct SHP2-dependent transcriptional programs in BCR-ABL1+and WT pre-B cells. Our results suggest that SHP2, via SFKs and ERK, represses MXD3/4 to facilitate a MYC-dependent proliferation program in BCR-ABL1-transformed pre-B cells.
PMCID:6005183
PMID: 28804122
ISSN: 1476-5551
CID: 2996532