Searched for: in-biosketch:yes
person:nudlee01
Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4
Bodnar, Nicholas O; Kim, Kelly H; Ji, Zhejian; Wales, Thomas E; Svetlov, Vladimir; Nudler, Evgeny; Engen, John R; Walz, Thomas; Rapoport, Tom A
Many polyubiquitinated proteins are extracted from membranes or complexes by the conserved ATPase Cdc48 (in yeast; p97 or VCP in mammals) before proteasomal degradation. Each Cdc48 hexamer contains two stacked ATPase rings (D1 and D2) and six N-terminal (N) domains. Cdc48 binds various cofactors, including the Ufd1-Npl4 heterodimer. Here, we report structures of the Cdc48-Ufd1-Npl4 complex from Chaetomium thermophilum. Npl4 interacts through its UBX-like domain with a Cdc48 N domain, and it uses two Zn2+-finger domains to anchor the enzymatically inactive Mpr1-Pad1 N-terminal (MPN) domain, homologous to domains found in several isopeptidases, to the top of the D1 ATPase ring. The MPN domain of Npl4 is located above Cdc48's central pore, a position similar to the MPN domain from deubiquitinase Rpn11 in the proteasome. Our results indicate that Npl4 is unique among Cdc48 cofactors and suggest a mechanism for binding and translocation of polyubiquitinated substrates into the ATPase.
PMCID:6044470
PMID: 29967539
ISSN: 1545-9985
CID: 3186072
Antibiotic killing through oxidized nucleotides
Rasouly, Aviram; Nudler, Evgeny
PMCID:5834738
PMID: 29444858
ISSN: 1091-6490
CID: 2958342
Protein S-Nitrosylation: Enzymatically Controlled, but Intrinsically Unstable, Post-translational Modification
Gusarov, Ivan; Nudler, Evgeny
Reports by Seth et al. (2018) and Wolhuter et al. (2018) in this issue of Molecular Cell highlight the enzymatic synthesis, functionality, and propagation of S-nitrosylation-based signaling and address its low stability due to the elevated reactivity toward other cellular thiols.
PMID: 29395059
ISSN: 1097-4164
CID: 2947432
EXPRESSION OF HYDROGEN SULFIDE (H2S) PRODUCING ENZYMES IN METASTATIC BRAIN TUMORS [Meeting Abstract]
Lechpammer, Mirna; Shahlaie, Kiarash; Girgis, Fady; Gonzales, Hilary; Bishop, John; Nudler, Evgeny; Zagzag, David
ISI:000415152501009
ISSN: 1523-5866
CID: 2802472
Structure of RNA polymerase bound to ribosomal 30S subunit
Demo, Gabriel; Rasouly, Aviram; Vasilyev, Nikita; Svetlov, Vladimir; Loveland, Anna B; Diaz-Avalos, Ruben; Grigorieff, Nikolaus; Nudler, Evgeny; Korostelev, Andrei A
In bacteria, mRNA transcription and translation are coupled to coordinate optimal gene expression and maintain genome stability. Coupling is thought to involve direct interactions between RNA polymerase (RNAP) and the translational machinery. We present cryo-EM structures of E. coli RNAP core bound to the small ribosomal 30S subunit. The complex is stable under cell-like ionic conditions, consistent with functional interaction between RNAP and the 30S subunit. The RNA exit tunnel of RNAP aligns with the Shine-Dalgarno-binding site of the 30S subunit. Ribosomal protein S1 forms a wall of the tunnel between RNAP and the 30S subunit, consistent with its role in directing mRNAs onto the ribosome. The nucleic-acid-binding cleft of RNAP samples distinct conformations, suggesting different functional states during transcription-translation coupling. The architecture of the 30S*RNAP complex provides a structural basis for co-localization of the transcriptional and translational machineries, and inform future mechanistic studies of coupled transcription and translation.
PMCID:5655137
PMID: 29027901
ISSN: 2050-084x
CID: 2732082
Mechanism of biofilm-mediated stress resistance and lifespan extension in C. elegans
Smolentseva, Olga; Gusarov, Ivan; Gautier, Laurent; Shamovsky, Ilya; DeFrancesco, Alicia S; Losick, Richard; Nudler, Evgeny
Bacteria naturally form communities of cells known as biofilms. However the physiological roles of biofilms produced by non-pathogenic microbiota remain largely unknown. To assess the impact of a biofilm on host physiology we explored the effect of several non-pathogenic biofilm-forming bacteria on Caenorhabditis elegans. We show that biofilm formation by Bacillus subtilis, Lactobacillus rhamnosus and Pseudomonas fluorescens induces C. elegans stress resistance. Biofilm also protects against pathogenic infection and prolongs lifespan. Total mRNA analysis identified a set of host genes that are upregulated in response to biofilm formation by B. subtilis. We further demonstrate that mtl-1 is responsible for the biofilm-mediated increase in oxidative stress resistance and lifespan extension. Induction of mtl-1 and hsp-70 promotes biofilm-mediated thermotolerance. ilys-2 activity accounts for biofilm-mediated resistance to Pseudomonas aeruginosa killing. These results reveal the importance of non-pathogenic biofilms for host physiology and provide a framework to study commensal biofilms in higher organisms.
PMCID:5540977
PMID: 28769037
ISSN: 2045-2322
CID: 2655842
Mechanistic insights into transcription coupled DNA repair
Pani, Bibhusita; Nudler, Evgeny
Transcription-coupled DNA repair (TCR) acts on lesions in the transcribed strand of active genes. Helix distorting adducts and other forms of DNA damage often interfere with the progression of the transcription apparatus. Prolonged stalling of RNA polymerase can promote genome instability and also induce cell cycle arrest and apoptosis. These generally unfavorable events are counteracted by RNA polymerase-mediated recruitment of specific proteins to the sites of DNA damage to perform TCR and eventually restore transcription. In this perspective we discuss the decision-making process to employ TCR and we elucidate the intricate biochemical pathways leading to TCR in E. coli and human cells.
PMCID:5538147
PMID: 28629777
ISSN: 1568-7856
CID: 2604202
Natural RNA Polymerase Aptamers Regulate Transcription in E. coli
Sedlyarova, Nadezda; Rescheneder, Philipp; Magan, Andres; Popitsch, Niko; Rziha, Natascha; Bilusic, Ivana; Epshtein, Vitaly; Zimmermann, Bob; Lybecker, Meghan; Sedlyarov, Vitaly; Schroeder, Renee; Nudler, Evgeny
In search for RNA signals that modulate transcription via direct interaction with RNA polymerase (RNAP), we deep sequenced an E. coli genomic library enriched for RNAP-binding RNAs. Many natural RNAP-binding aptamers, termed RAPs, were mapped to the genome. Over 60% of E. coli genes carry RAPs in their mRNA. Combining in vitro and in vivo approaches, we characterized a subset of inhibitory RAPs (iRAPs) that promote Rho-dependent transcription termination. A representative iRAP within the coding region of the essential gene, nadD, greatly reduces its transcriptional output in stationary phase and under oxidative stress, demonstrating that iRAPs control gene expression in response to changing environment. The mechanism of iRAPs involves active uncoupling of transcription and translation, making nascent RNA accessible to Rho. iRAPs encoded in the antisense strand also promote gene expression by reducing transcriptional interference. In essence, our work uncovers a broad class of cis-acting RNA signals that globally control bacterial transcription.
PMCID:5535762
PMID: 28648779
ISSN: 1097-4164
CID: 2614512
Upregulation of cystathione beta-synthase and p70S6K/S6 in neonatal hypoxic ischemic brain injury
Lechpammer, Mirna; Tran, Yen P; Wintermark, Pia; Martinez-Cerdeno, Veronica; Krishnan, Viswanathan V; Ahmed, Waseem; Berman, Robert F; Jensen, Frances E; Nudler, Evgeny; Zagzag, David
Encephalopathy of prematurity (EOP) is a complex form of cerebral injury that occurs in the setting of hypoxia-ischemia (HI) in premature infants. Using a rat model of EOP, we investigated whether neonatal HI of the brain may alter the expression of cystathionine beta-synthase (CBS) and the components of the mammalian target of rapamycin (mTOR) signaling. We performed unilateral carotid ligation and induced HI (UCL/HI) in Long-Evans rats at P6 and found increased CBS expression in white matter (i.e., corpus callosum, cingulum bundle and external capsule) as early as 24 hours (P7) post-procedure. CBS remained elevated through P21, and, to a lesser extent, at P40. The mTOR downstream target 70 kDa ribosomal protein S6 kinase (p70S6K and phospho-p70S6K) and 40S ribosomal protein S6 (S6 and phospho-S6) were also overexpressed at the same time points in the UCL/HI rats compared to healthy controls. Overexpression of mTOR components was not observed in rats treated with the mTOR inhibitor everolimus. Behavioral assays performed on young rats (postnatal day 35-37) following UCL/HI at P6 indicated impaired preference for social novelty, a behavior relevant to autism spectrum disorder, and hyperactivity. Everolimus restored behavioral patterns to those observed in healthy controls. A gait analysis has shown that motor deficits in the hind paws of UCL/HI rats were also significantly reduced by everolimus. Our results suggest that neonatal HI brain injury may inflict long-term damage by upregulation of CBS and mTOR signaling. We propose this cascade as a possible new molecular target for E
PMID: 27465493
ISSN: 1750-3639
CID: 2191582
Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress
Gusarov, Ivan; Pani, Bibhusita; Gautier, Laurent; Smolentseva, Olga; Eremina, Svetlana; Shamovsky, Ilya; Katkova-Zhukotskaya, Olga; Mironov, Alexander; Nudler, Evgeny
A high-sugar diet has been associated with reduced lifespan in organisms ranging from worms to mammals. However, the mechanisms underlying the harmful effects of glucose are poorly understood. Here we establish a causative relationship between endogenous glucose storage in the form of glycogen, resistance to oxidative stress and organismal aging in Caenorhabditis elegans. We find that glycogen accumulated on high dietary glucose limits C. elegans longevity. Glucose released from glycogen and used for NADPH/glutathione reduction renders nematodes and human hepatocytes more resistant against oxidative stress. Exposure to low levels of oxidants or genetic inhibition of glycogen synthase depletes glycogen stores and extends the lifespan of animals fed a high glucose diet in an AMPK-dependent manner. Moreover, glycogen interferes with low insulin signalling and accelerates aging of long-lived daf-2 worms fed a high glucose diet. Considering its extensive evolutionary conservation, our results suggest that glycogen metabolism might also have a role in mammalian aging.
PMCID:5481799
PMID: 28627510
ISSN: 2041-1723
CID: 2603802