Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:pilpey01

Total Results:

89


Messenger RNA fluctuations and regulatory RNAs shape the dynamics of a negative feedback loop

Rodríguez Martínez, María; Soriano, Jordi; Tlusty, Tsvi; Pilpel, Yitzhak; Furman, Itay
Single-cell experiments of simple regulatory networks can markedly differ from cell population experiments. Such differences arise from stochastic events in individual cells that are averaged out in cell populations. For instance, while individual cells may show sustained oscillations in the concentrations of some proteins, such oscillations may appear damped in the population average. In this paper we investigate the role of RNA stochastic fluctuations as a leading force to produce a sustained excitatory behavior at the single-cell level. As opposed to some previous models, we build a fully stochastic model of a negative feedback loop that explicitly takes into account the RNA stochastic dynamics. We find that messenger RNA random fluctuations can be amplified during translation and produce sustained pulses of protein expression. Motivated by the recent appreciation of the importance of noncoding regulatory RNAs in post-transcription regulation, we also consider the possibility that a regulatory RNA transcript could bind to the messenger RNA and repress translation. Our findings show that the regulatory transcript helps reducing gene expression variability both at the single-cell level and at the cell population level.
PMID: 20365787
ISSN: 1550-2376
CID: 5305942

Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode

Shen-Orr, Shai S; Pilpel, Yitzhak; Hunter, Craig P
BACKGROUND:Early embryos contain mRNA transcripts expressed from two distinct origins; those expressed from the mother's genome and deposited in the oocyte (maternal) and those expressed from the embryo's genome after fertilization (zygotic). The transition from maternal to zygotic control occurs at different times in different animals according to the extent and form of maternal contributions, which likely reflect evolutionary and ecological forces. Maternally deposited transcripts rely on post-transcriptional regulatory mechanisms for precise spatial and temporal expression in the embryo, whereas zygotic transcripts can use both transcriptional and post-transcriptional regulatory mechanisms. The differences in maternal contributions between animals may be associated with gene regulatory changes detectable by the size and complexity of the associated regulatory regions. RESULTS:We have used genomic data to identify and compare maternal and/or zygotic expressed genes from six different animals and find evidence for selection acting to shape gene regulatory architecture in thousands of genes. We find that mammalian maternal genes are enriched for complex regulatory regions, suggesting an increase in expression specificity, while egg-laying animals are enriched for maternal genes that lack transcriptional specificity. CONCLUSIONS:We propose that this lack of specificity for maternal expression in egg-laying animals indicates that a large fraction of maternal genes are expressed non-functionally, providing only supplemental nutritional content to the developing embryo. These results provide clear predictive criteria for analysis of additional genomes.
PMCID:2911106
PMID: 20515465
ISSN: 1474-760x
CID: 5305972

Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate

Shalgi, Reut; Brosh, Ran; Oren, Moshe; Pilpel, Yitzhak; Rotter, Varda
miRNAs function as a critical regulatory layer in development, differentiation, and the maintenance of cell fate. Depletion of miRNAs from embryonic stem cells impairs their differentiation capacity. Total elimination of miRNAs leads to premature senescence in normal cells and tissues through activation of the DNA-damage checkpoint, whereas ablation of miRNAs in cancer cell lines results in an opposite effect, enhancing their tumorigenic potential. Here we compile evidence from the literature that point at miRNAs as key players in the maintenance of genomic integrity and proper cell fate. There is an apparent gap between our understanding of the subtle way by which miRNAs modulate protein levels, and their profound impact on cell fate. We propose that examining miRNAs in the context of the regulatory transcriptional and post-transcriptional networks they are embedded in may provide a broader view of their role in controlling cell fate.
PMCID:2815735
PMID: 20157565
ISSN: 1945-4589
CID: 5305932

Can molecular motors drive distance measurements in injured neurons?

Kam, Naaman; Pilpel, Yitzhak; Fainzilber, Mike
Injury to nerve axons induces diverse responses in neuronal cell bodies, some of which are influenced by the distance from the site of injury. This suggests that neurons have the capacity to estimate the distance of the injury site from their cell body. Recent work has shown that the molecular motor dynein transports importin-mediated retrograde signaling complexes from axonal lesion sites to cell bodies, raising the question whether dynein-based mechanisms enable axonal distance estimations in injured neurons? We used computer simulations to examine mechanisms that may provide nerve cells with dynein-dependent distance assessment capabilities. A multiple-signals model was postulated based on the time delay between the arrival of two or more signals produced at the site of injury-a rapid signal carried by action potentials or similar mechanisms and slower signals carried by dynein. The time delay between the arrivals of these two types of signals should reflect the distance traversed, and simulations of this model show that it can indeed provide a basis for distance measurements in the context of nerve injuries. The analyses indicate that the suggested mechanism can allow nerve cells to discriminate between distances differing by 10% or more of their total axon length, and suggest that dynein-based retrograde signaling in neurons can be utilized for this purpose over different scales of nerves and organisms. Moreover, such a mechanism might also function in synapse to nucleus signaling in uninjured neurons. This could potentially allow a neuron to dynamically sense the relative lengths of its processes on an ongoing basis, enabling appropriate metabolic output from cell body to processes.
PMCID:2718615
PMID: 19696880
ISSN: 1553-7358
CID: 5305922

Adaptive prediction of environmental changes by microorganisms

Mitchell, Amir; Romano, Gal H; Groisman, Bella; Yona, Avihu; Dekel, Erez; Kupiec, Martin; Dahan, Orna; Pilpel, Yitzhak
Natural habitats of some microorganisms may fluctuate erratically, whereas others, which are more predictable, offer the opportunity to prepare in advance for the next environmental change. In analogy to classical Pavlovian conditioning, microorganisms may have evolved to anticipate environmental stimuli by adapting to their temporal order of appearance. Here we present evidence for environmental change anticipation in two model microorganisms, Escherichia coli and Saccharomyces cerevisiae. We show that anticipation is an adaptive trait, because pre-exposure to the stimulus that typically appears early in the ecology improves the organism's fitness when encountered with a second stimulus. Additionally, we observe loss of the conditioned response in E. coli strains that were repeatedly exposed in a laboratory evolution experiment only to the first stimulus. Focusing on the molecular level reveals that the natural temporal order of stimuli is embedded in the wiring of the regulatory network-early stimuli pre-induce genes that would be needed for later ones, yet later stimuli only induce genes needed to cope with them. Our work indicates that environmental anticipation is an adaptive trait that was repeatedly selected for during evolution and thus may be ubiquitous in biology.
PMID: 19536156
ISSN: 1476-4687
CID: 5305912

Genetic redundancy: new tricks for old genes

Kafri, Ran; Springer, Michael; Pilpel, Yitzhak
Many crucial components of signal transduction, developmental, and metabolic pathways have functionally redundant copies. Further, these redundancies show surprising evolutionary stability over prolonged time scales. We propose that redundancies are not just archeological leftovers of ancient gene duplications, but rather that synergy arising from feedback between redundant copies may serve as an information processing element that facilitates signal transduction and the control of gene expression.
PMID: 19203571
ISSN: 1097-4172
CID: 5305902

Functional characterization of variations on regulatory motifs

Lapidot, Michal; Michal, Lapidot; Mizrahi-Man, Orna; Pilpel, Yitzhak
Transcription factors (TFs) regulate gene expression through specific interactions with short promoter elements. The same regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional implications of variations on regulatory motifs and to compare the functions of related sites. We have developed computational means for estimating the functional outcome of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence, we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication is expected to be the ability to predict the phenotypic effect of variation in regulatory motifs in promoters.
PMID: 18369443
ISSN: 1553-7404
CID: 5305872

Preferential protection of protein interaction network hubs in yeast: evolved functionality of genetic redundancy

Kafri, Ran; Dahan, Orna; Levy, Jonathan; Pilpel, Yitzhak
The widely observed dispensability of duplicate genes is typically interpreted to suggest that a proportion of the duplicate pairs are at least partially redundant in their functions, thus allowing for compensatory affects. However, because redundancy is expected to be evolutionarily short lived, there is currently debate on both the proportion of redundant duplicates and their functional importance. Here, we examined these compensatory interactions by relying on a genome wide data analysis, followed by experiments and literature mining in yeast. Our data, thus, strongly suggest that compensated duplicates are not randomly distributed within the protein interaction network but are rather strategically allocated to the most highly connected proteins. This design is appealing because it suggests that many of the potentially vulnerable nodes that would otherwise be highly sensitive to mutations are often protected by redundancy. Furthermore, divergence analyses show that this association between redundancy and protein connectivity becomes even more significant among the ancient duplicates, suggesting that these functional overlaps have undergone purifying selection. Our results suggest an intriguing conclusion-although redundancy is typically transient on evolutionary time scales, it tends to be preserved among some of the central proteins in the cellular interaction network.
PMCID:2234123
PMID: 18216251
ISSN: 1091-6490
CID: 5305862

Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation

Shalem, Ophir; Dahan, Orna; Levo, Michal; Martinez, Maria Rodriguez; Furman, Itay; Segal, Eran; Pilpel, Yitzhak
The state of the transcriptome reflects a balance between mRNA production and degradation. Yet how these two regulatory arms interact in shaping the kinetics of the transcriptome in response to environmental changes is not known. We subjected yeast to two stresses, one that induces a fast and transient response, and another that triggers a slow enduring response. We then used microarrays following transcriptional arrest to measure genome-wide decay profiles under each condition. We found condition-specific changes in mRNA decay rates and coordination between mRNA production and degradation. In the transient response, most induced genes were surprisingly destabilized, whereas repressed genes were somewhat stabilized, exhibiting counteraction between production and degradation. This strategy can reconcile high steady-state level with short response time among induced genes. In contrast, the stress that induces the slow response displays the more expected behavior, whereby most induced genes are stabilized, and repressed genes are destabilized. Our results show genome-wide interplay between mRNA production and degradation, and that alternative modes of such interplay determine the kinetics of the transcriptome in response to stress.
PMCID:2583085
PMID: 18854817
ISSN: 1744-4292
CID: 5305882

p53-Repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation

Brosh, Ran; Shalgi, Reut; Liran, Atar; Landan, Gilad; Korotayev, Katya; Nguyen, Giang Huong; Enerly, Espen; Johnsen, Hilde; Buganim, Yosef; Solomon, Hilla; Goldstein, Ido; Madar, Shalom; Goldfinger, Naomi; Børresen-Dale, Anne-Lise; Ginsberg, Doron; Harris, Curtis C; Pilpel, Yitzhak; Oren, Moshe; Rotter, Varda
Normal cell growth is governed by a complicated biological system, featuring multiple levels of control, often deregulated in cancers. The role of microRNAs (miRNAs) in the control of gene expression is now increasingly appreciated, yet their involvement in controlling cell proliferation is still not well understood. Here we investigated the mammalian cell proliferation control network consisting of transcriptional regulators, E2F and p53, their targets and a family of 15 miRNAs. Indicative of their significance, expression of these miRNAs is downregulated in senescent cells and in breast cancers harboring wild-type p53. These miRNAs are repressed by p53 in an E2F1-mediated manner. Furthermore, we show that these miRNAs silence antiproliferative genes, which themselves are E2F1 targets. Thus, miRNAs and transcriptional regulators appear to cooperate in the framework of a multi-gene transcriptional and post-transcriptional feed-forward loop. Finally, we show that, similarly to p53 inactivation, overexpression of representative miRNAs promotes proliferation and delays senescence, manifesting the detrimental phenotypic consequence of perturbations in this circuit. Taken together, these findings position miRNAs as novel key players in the mammalian cellular proliferation network.
PMID: 19034270
ISSN: 1744-4292
CID: 5305892