Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:rothee02

Total Results:

115


Anosmin1 Shuttles Fgf to Facilitate Its Diffusion, Increase Its Local Concentration, and Induce Sensory Organs

Wang, John; Yin, Yandong; Lau, Stephanie; Sankaran, Jagadish; Rothenberg, Eli; Wohland, Thorsten; Meier-Schellersheim, Martin; Knaut, Holger
Growth factors induce and pattern sensory organs, but how their distribution is regulated by the extracellular matrix (ECM) is largely unclear. To address this question, we analyzed the diffusion behavior of Fgf10 molecules during sensory organ formation in the zebrafish posterior lateral line primordium. In this tissue, secreted Fgf10 induces organ formation at a distance from its source. We find that most Fgf10 molecules are highly diffusive and move rapidly through the ECM. We identify Anosmin1, which when mutated in humans causes Kallmann Syndrome, as an ECM protein that binds to Fgf10 and facilitates its diffusivity by increasing the pool of fast-moving Fgf10 molecules. In the absence of Anosmin1, Fgf10 levels are reduced and organ formation is impaired. Global overexpression of Anosmin1 slows the fast-moving Fgf10 molecules and results in Fgf10 dispersal. These results suggest that Anosmin1 liberates ECM-bound Fgf10 and shuttles it to increase its signaling range.
PMID: 30122631
ISSN: 1878-1551
CID: 3246292

Spatiotemporal dynamics of homologous recombination repair at single collapsed replication forks

Whelan, Donna R; Lee, Wei Ting C; Yin, Yandong; Ofri, Dylan M; Bermudez-Hernandez, Keria; Keegan, Sarah; Fenyo, David; Rothenberg, Eli
Homologous recombination (HR) is a crucial pathway for the repair of DNA double-strand breaks. BRCA1/2 breast cancer proteins are key players in HR via their mediation of RAD51 nucleofilament formation and function; however, their individual roles and crosstalk in vivo are unknown. Here we use super-resolution (SR) imaging to map the spatiotemporal kinetics of HR proteins, revealing the interdependent relationships that govern the dynamic interplay and progression of repair events. We show that initial single-stranded DNA/RAD51 nucleofilament formation is mediated by RAD52 or, in the absence of RAD52, by BRCA2. In contrast, only BRCA2 can orchestrate later RAD51 recombinase activity during homology search and resolution. Furthermore, we establish that upstream BRCA1 activity is critical for BRCA2 function. Our analyses reveal the underlying epistatic landscape of RAD51 functional dependence on RAD52, BRCA1, and BRCA2 during HR and explain the phenotypic similarity of diseases associated with mutations in these proteins.
PMID: 30250272
ISSN: 2041-1723
CID: 3314172

PARP1-dependent recruitment of the FBXL10-RNF68-RNF2 ubiquitin ligase to sites of DNA damage controls H2A.Z loading

Rona, Gergely; Roberti, Domenico; Yin, Yandong; Pagan, Julia K; Homer, Harrison; Sassani, Elizabeth; Zeke, Andras; Busino, Luca; Rothenberg, Eli; Pagano, Michele
The mammalian FBXL10-RNF68-RNF2 ubiquitin ligase complex (FRRUC) mono-ubiquitylates H2A at Lys119 to repress transcription in unstressed cells. We found that the FRRUC is rapidly and transiently recruited to sites of DNA damage in a PARP1- and TIMELESS-dependent manner to promote mono-ubiquitylation of H2A at Lys119, a local decrease of H2A levels, and an increase of H2A.Z incorporation. Both the FRRUC and H2A.Z promote transcriptional repression, double strand break signaling, and homologous recombination repair (HRR). All these events require both the presence and activity of the FRRUC. Moreover, the FRRUC and its activity are required for the proper recruitment of BMI1-RNF2 and MEL18-RNF2, two other ubiquitin ligases that mono-ubiquitylate Lys119 in H2A upon genotoxic stress. Notably, whereas H2A.Z is not required for H2A mono-ubiquitylation, impairment of the latter results in the inhibition of H2A.Z incorporation. We propose that the recruitment of the FRRUC represents an early and critical regulatory step in HRR.
PMCID:6037479
PMID: 29985131
ISSN: 2050-084x
CID: 3191772

The Ubiquitin E3/E4 Ligase UBE4A Adjusts Protein Ubiquitylation and Accumulation at Sites of DNA Damage, Facilitating Double-Strand Break Repair

Baranes-Bachar, Keren; Levy-Barda, Adva; Oehler, Judith; Reid, Dylan A; Soria-Bretones, Isabel; Voss, Ty C; Chung, Dudley; Park, Yoon; Liu, Chao; Yoon, Jong-Bok; Li, Wei; Dellaire, Graham; Misteli, Tom; Huertas, Pablo; Rothenberg, Eli; Ramadan, Kristijan; Ziv, Yael; Shiloh, Yosef
Double-strand breaks (DSBs) are critical DNA lesions that robustly activate the elaborate DNA damage response (DDR) network. We identified a critical player in DDR fine-tuning: the E3/E4 ubiquitin ligase UBE4A. UBE4A's recruitment to sites of DNA damage is dependent on primary E3 ligases in the DDR and promotes enhancement and sustainment of K48- and K63-linked ubiquitin chains at these sites. This step is required for timely recruitment of the RAP80 and BRCA1 proteins and proper organization of RAP80- and BRCA1-associated protein complexes at DSB sites. This pathway is essential for optimal end resection at DSBs, and its abrogation leads to upregulation of the highly mutagenic alternative end-joining repair at the expense of error-free homologous recombination repair. Our data uncover a critical regulatory level in the DSB response and underscore the importance of fine-tuning the complex DDR network for accurate and balanced execution of DSB repair.
PMID: 29499138
ISSN: 1097-4164
CID: 2966042

Localized Myosin II Activity Regulates Assembly and Plasticity of the Axon Initial Segment

Berger, Stephen L; Leo-Macias, Alejandra; Yuen, Stephanie; Khatri, Latika; Pfennig, Sylvia; Zhang, Yanqing; Agullo-Pascual, Esperanza; Caillol, Ghislaine; Zhu, Min-Sheng; Rothenberg, Eli; Melendez-Vasquez, Carmen V; Delmar, Mario; Leterrier, Christophe; Salzer, James L
The axon initial segment (AIS) is the site of action potential generation and a locus of activity-dependent homeostatic plasticity. A multimeric complex of sodium channels, linked via a cytoskeletal scaffold of ankyrin G and beta IV spectrin to submembranous actin rings, mediates these functions. The mechanisms that specify the AIS complex to the proximal axon and underlie its plasticity remain poorly understood. Here we show phosphorylated myosin light chain (pMLC), an activator of contractile myosin II, is highly enriched in the assembling and mature AIS, where it associates with actin rings. MLC phosphorylation and myosin II contractile activity are required for AIS assembly, and they regulate the distribution of AIS components along the axon. pMLC is rapidly lost during depolarization, destabilizing actin and thereby providing a mechanism for activity-dependent structural plasticity of the AIS. Together, these results identify pMLC/myosin II activity as a common link between AIS assembly and plasticity.
PMCID:5805619
PMID: 29395909
ISSN: 1097-4199
CID: 2947452

Novel Imaging Techniques in Cardiac Ion Channel Researc

Chapter by: Agullo-Pascual, Esperanza; Leo-Macias, Alejandra; Whelan, Donna R; Delmar, Mario; Rothenberg, Eli
in: Channelopathies in heart disease by Thomas, Dierk; Remme, Carol Ann (Eds)
Cham, Switzerland : Springer, [2018]
pp. 361-378
ISBN: 9783319778112
CID: 3614282

Sodium Channel Remodeling in Subcellular Microdomains of Murine Failing Cardiomyocytes

Rivaud, Mathilde R; Agullo-Pascual, Esperanza; Lin, Xianming; Leo-Macias, Alejandra; Zhang, Mingliang; Rothenberg, Eli; Bezzina, Connie R; Delmar, Mario; Remme, Carol Ann
BACKGROUND/BACKGROUND:Cardiac sodium channel (NaV1.5) dysfunction contributes to arrhythmogenesis during pathophysiological conditions. Nav1.5 localizes to distinct subcellular microdomains within the cardiomyocyte, where it associates with region-specific proteins, yielding complexes whose function is location specific. We herein investigated sodium channel remodeling within distinct cardiomyocyte microdomains during heart failure. METHODS AND RESULTS/RESULTS:Mice were subjected to 6 weeks of transverse aortic constriction (TAC; n=32) to induce heart failure. Sham-operated on mice were used as controls (n=20). TAC led to reduced left ventricular ejection fraction, QRS prolongation, increased heart mass, and upregulation of prohypertrophic genes. Whole-cell sodium current (INa) density was decreased by 30% in TAC versus sham-operated on cardiomyocytes. On macropatch analysis, INa in TAC cardiomyocytes was reduced by 50% at the lateral membrane (LM) and by 40% at the intercalated disc. Electron microscopy and scanning ion conductance microscopy revealed remodeling of the intercalated disc (replacement of [inter-]plicate regions by large foldings) and LM (less identifiable T tubules and reduced Z-groove ratios). Using scanning ion conductance microscopy, cell-attached recordings in LM subdomains revealed decreased INa and increased late openings specifically at the crest of TAC cardiomyocytes, but not in groove/T tubules. Failing cardiomyocytes displayed a denser, but more stable, microtubule network (demonstrated by increased α-tubulin and Glu-tubulin expression). Superresolution microscopy showed reduced average NaV1.5 cluster size at the LM of TAC cells, in line with reduced INa. CONCLUSIONS/CONCLUSIONS:Heart failure induces structural remodeling of the intercalated disc, LM, and microtubule network in cardiomyocytes. These adaptations are accompanied by alterations in NaV1.5 clustering and INa within distinct subcellular microdomains of failing cardiomyocytes.
PMCID:5779058
PMID: 29222390
ISSN: 2047-9980
CID: 2835672

A Method for Quantifying Molecular Interactions Using Stochastic Modelling and Super-Resolution Microscopy

Bermudez-Hernandez, Keria; Keegan, Sarah; Whelan, Donna R; Reid, Dylan A; Zagelbaum, Jennifer; Yin, Yandong; Ma, Sisi; Rothenberg, Eli; Fenyo, David
We introduce the Interaction Factor (IF), a measure for quantifying the interaction of molecular clusters in super-resolution microscopy images. The IF is robust in the sense that it is independent of cluster density, and it only depends on the extent of the pair-wise interaction between different types of molecular clusters in the image. The IF for a single or a collection of images is estimated by first using stochastic modelling where the locations of clusters in the images are repeatedly randomized to estimate the distribution of the overlaps between the clusters in the absence of interaction (IF = 0). Second, an analytical form of the relationship between IF and the overlap (which has the random overlap as its only parameter) is used to estimate the IF for the experimentally observed overlap. The advantage of IF compared to conventional methods to quantify interaction in microscopy images is that it is insensitive to changing cluster density and is an absolute measure of interaction, making the interpretation of experiments easier. We validate the IF method by using both simulated and experimental data and provide an ImageJ plugin for determining the IF of an image.
PMCID:5665986
PMID: 29093506
ISSN: 2045-2322
CID: 2764952

DNA Ligase IV Guides End-Processing Choice during Nonhomologous End Joining

Conlin, Michael P; Reid, Dylan A; Small, George W; Chang, Howard H; Watanabe, Go; Lieber, Michael R; Ramsden, Dale A; Rothenberg, Eli
Nonhomologous end joining (NHEJ) must adapt to diverse end structures during repair of chromosome breaks. Here, we investigate the mechanistic basis for this flexibility. DNA ends are aligned in a paired-end complex (PEC) by Ku, XLF, XRCC4, and DNA ligase IV (LIG4); we show by single-molecule analysis how terminal mispairs lead to mobilization of ends within PECs and consequent sampling of more end-alignment configurations. This remodeling is essential for direct ligation of damaged and mispaired ends during cellular NHEJ, since remodeling and ligation of such ends both require a LIG4-specific structural motif, insert1. Insert1 is also required for PEC remodeling that enables nucleolytic processing when end structures block direct ligation. Accordingly, cells expressing LIG4 lacking insert1 are sensitive to ionizing radiation. Cellular NHEJ of diverse ends thus identifies the steps necessary for repair through LIG4-mediated sensing of differences in end structure and consequent dynamic remodeling of aligned ends.
PMCID:5649367
PMID: 28930678
ISSN: 2211-1247
CID: 2707992

SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination

Daddacha, Waaqo; Koyen, Allyson E; Bastien, Amanda J; Head, PamelaSara E; Dhere, Vishal R; Nabeta, Geraldine N; Connolly, Erin C; Werner, Erica; Madden, Matthew Z; Daly, Michele B; Minten, Elizabeth V; Whelan, Donna R; Schlafstein, Ashley J; Zhang, Hui; Anand, Roopesh; Doronio, Christine; Withers, Allison E; Shepard, Caitlin; Sundaram, Ranjini K; Deng, Xingming; Dynan, William S; Wang, Ya; Bindra, Ranjit S; Cejka, Petr; Rothenberg, Eli; Doetsch, Paul W; Kim, Baek; Yu, David S
DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutieres syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.
PMCID:5576576
PMID: 28834754
ISSN: 2211-1247
CID: 2676112