Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:ryooh01

Total Results:

66


Control of the nuclear localization of Extradenticle by competing nuclear import and export signals

Abu-Shaar M; Ryoo HD; Mann RS
The Drosophila PBC protein Extradenticle (Exd) is regulated at the level of its subcellular distribution: It is cytoplasmic in the absence of Homothorax (Hth), a Meis family member, and nuclear in the presence of Hth. Here we present evidence that, in the absence of Hth, Exd is exported from nuclei due to the activity of a nuclear export signal (NES). The activity of this NES is inhibited by the antibiotic Leptomycin B, suggesting that Exd is exported by a CRM1/exportin1-related export pathway. By analyzing the subcellular localization of Exd deletion mutants in imaginal discs and cultured cells, we identified three elements in Exd, a putative NES, a nuclear localization sequence (NLS), and a region required for Hth-mediated nuclear localization. This latter region coincides with a domain in Exd that binds Hth protein in vitro. When Exd is uncomplexed with Hth, the NES dominates over the NLS. When Exd is expressed together with Hth, or when the NES is deleted, Exd is nuclear. Thus, Hth is required to overcome the influence of the NES, possibly by inducing a conformational change in Exd. Finally, we provide evidence that Hth and Exd normally interact in the cytoplasm, and that Hth also has an NLS. We propose that in Exd there exists a balance between the activities of an NES and an NLS, and that Hth alters this balance in favor of the NLS
PMCID:316638
PMID: 10215621
ISSN: 0890-9369
CID: 57972

Structure of a DNA-bound Ultrabithorax-Extradenticle homeodomain complex

Passner JM; Ryoo HD; Shen L; Mann RS; Aggarwal AK
During the development of multicellular organisms, gene expression must be tightly regulated, both spatially and temporally. One set of transcription factors that are important in animal development is encoded by the homeotic (Hox) genes, which govern the choice between alternative developmental pathways along the anterior-posterior axis. Hox proteins, such as Drosophila Ultrabithorax, have low DNA-binding specificity by themselves but gain affinity and specificity when they bind together with the homeoprotein Extradenticle (or Pbxl in mammals). To understand the structural basis of Hox-Extradenticle pairing, we determine here the crystal structure of an Ultrabithorax-Extradenticle-DNA complex at 2.4 A resolution, using the minimal polypeptides that form a cooperative heterodimer. The Ultrabithorax and Extradenticle homeodomains bind opposite faces of the DNA, with their DNA-recognition helices almost touching each other. However, most of the cooperative interactions arise from the YPWM amino-acid motif of Ultrabithorax-located amino-terminally to its homeodomain-which forms a reverse turn and inserts into a hydrophobic pocket on the Extradenticle homeodomain surface. Together, these protein-DNA and protein-protein interactions define the general principles by which homeotic proteins interact with Extradenticle (or Pbx1) to affect development along the anterior-posterior axis of animals
PMID: 10067897
ISSN: 0028-0836
CID: 57973

Synergistic activation of a Drosophila enhancer by HOM/EXD and DPP signaling

Grieder NC; Marty T; Ryoo HD; Mann RS; Affolter M
The homeotic proteins encoded by the genes of the Drosophila HOM and the vertebrate HOX complexes do not bind divergent DNA sequences with a high selectivity. In vitro, HOM (HOX) specificity can be increased by the formation of heterodimers with Extradenticle (EXD) or PBX homeodomain proteins. We have identified a single essential Labial (LAB)/EXD-binding site in a Decapentaplegic (DPP)-responsive enhancer of the homeotic gene lab which drives expression in the developing midgut. We show that LAB and EXD bind cooperatively to the site in vitro, and that the expression of the enhancer in vivo requires exd and lab function. In addition, point mutations in either the EXD or the LAB subsite compromise enhancer function, strongly suggesting that EXD and LAB bind to this site in vivo. Interestingly, we found that the activity of the enhancer is only stimulated by DPP signaling significantly upon binding of LAB and EXD. Thus, the enhancer appears to integrate positional information via the homeotic gene lab, and spatiotemporal information via DPP signaling; only when these inputs act in concert in an endodermal cell is the enhancer fully active. Our results illustrate how a tissue-specific response to DPP can be generated through synergistic effects on an enhancer carrying both DPP- and HOX-responsive sequences
PMCID:1170340
PMID: 9405369
ISSN: 0261-4189
CID: 57974

Nuclear translocation of extradenticle requires homothorax, which encodes an extradenticle-related homeodomain protein

Rieckhof GE; Casares F; Ryoo HD; Abu-Shaar M; Mann RS
We show that homothorax (hth) is required for the Hox genes to pattern the body of the fruit fly, Drosophila melanogaster. hth is necessary for the nuclear localization of an essential HOX cofactor, Extradenticle (EXD), and encodes a homeodomain protein that shares extensive identity with the product of Meis1, a murine proto-oncogene. MEIS1 is able to rescue hth mutant phenotypes and can induce the cytoplasmic-to-nuclear translocation of EXD in cell culture and Drosophila embryos. Thus, Meis1 is a murine homolog of hth. MEIS1/HTH also specifically binds to EXD with high affinity in vitro. These data suggest a novel and evolutionarily conserved mechanism for regulating HOX activity in which a direct protein-protein interaction between EXD and HTH results in EXD's nuclear translocation
PMID: 9346235
ISSN: 0092-8674
CID: 57975

A role for phosphorylation by casein kinase II in modulating Antennapedia activity in Drosophila

Jaffe L; Ryoo HD; Mann RS
We present evidence that the in vivo activity of the HOX protein Antennapedia (ANTP) is modified because of phosphorylation by the serine/threonine kinase casein kinase II (CKII). Using an in vivo assay a form of ANTP that has alanine substitutions at its CKII target sites has, in addition to wild-type ANTP functions, the ability to alter severely thoracic and abdominal development. The novel functions of this protein suggest that this form of ANTP is not suppressed phenotypically by the more posterior homeotic proteins. In contrast, the in vivo activity of a form of ANTP that contains acidic amino acid substitutions at its CKII target sites, thereby mimicking a constitutively phosphorylated ANTP protein, is greatly reduced. This hypoactive form of ANTP, but not the alanine-substituted form, is also reduced in its ability to bind to DNA cooperatively with the homeodomain protein Extradenticle. Our results suggest that phosphorylation of ANTP by CKII is important for preventing inappropriate activities of this homeotic protein during embryogenesis
PMID: 9171376
ISSN: 0890-9369
CID: 57976

Switching the in vivo specificity of a minimal Hox-responsive element

Chan SK; Ryoo HD; Gould A; Krumlauf R; Mann RS
The homeodomain proteins encoded by the Hox complex genes do not bind DNA with high specificity. In vitro, Hox specificity can be increased by binding to DNA cooperatively with the homeodomain protein extradenticle or its vertebrate homologs, the pbx proteins (together, the PBC family). Here we show that a two basepair change in a Hox-PBC binding site switches the Hox-dependent expression pattern generated in vivo, from labial to Deformed. The change in vivo correlates with an altered Hox binding specificity in vitro. Further, we identify similar Deformed-PBC binding sites in the Deformed and Hoxb-4 genes and show that they generate Deformed or Hoxb-4 expression patterns in Drosophila and mouse embryos, respectively. These results suggest a model in which Hox-PBC binding sites play an instructive role in Hox specificity by promoting the formation of different Hox-PBC heterodimers in vivo. Thus, the choice of Hox partner, and therefore Hox target genes, depends on subtle differences between Hox-PBC binding sites
PMID: 9169847
ISSN: 0950-1991
CID: 57977