Searched for: in-biosketch:yes
person:veraaj01
Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations
Van Steenkiste, Gwendolyn; Jeurissen, Ben; Veraart, Jelle; den Dekker, Arnold J; Parizel, Paul M; Poot, Dirk H J; Sijbers, Jan
PURPOSE/OBJECTIVE:Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal-to-noise ratio. Recently, methods have been proposed to improve the trade-off between spatial resolution, signal-to-noise ratio, and acquisition time of diffusion-weighted images via super-resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q-space relation between the different diffusion-weighted images. METHOD/METHODS:An SRR method that includes a diffusion model and directly reconstructs high resolution diffusion parameters from a set of low resolution diffusion-weighted images was proposed. Our method allows an arbitrary combination of diffusion gradient directions and slice orientations for the low resolution diffusion-weighted images, optimally samples the q- and k-space, and performs motion correction with b-matrix rotation. RESULTS:Experiments with synthetic data and in vivo human brain data show an increase of spatial resolution of the diffusion parameters, while preserving a high signal-to-noise ratio and low scan time. Moreover, the proposed SRR method outperforms the previous methods in terms of the root-mean-square error. CONCLUSION/CONCLUSIONS:The proposed SRR method substantially increases the spatial resolution of MRI that can be obtained in a clinically feasible scan time.
PMID: 25613283
ISSN: 1522-2594
CID: 4214522
Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue
Jelescu, Ileana O; Veraart, Jelle; Fieremans, Els; Novikov, Dmitry S
The ultimate promise of diffusion MRI (dMRI) models is specificity to neuronal microstructure, which may lead to distinct clinical biomarkers using noninvasive imaging. While multi-compartment models are a common approach to interpret water diffusion in the brain in vivo, the estimation of their parameters from the dMRI signal remains an unresolved problem. Practically, even when q space is highly oversampled, nonlinear fit outputs suffer from heavy bias and poor precision. So far, this has been alleviated by fixing some of the model parameters to a priori values, for improved precision at the expense of accuracy. Here we use a representative two-compartment model to show that fitting fails to determine the five model parameters from over 60 measurement points. For the first time, we identify the reasons for this poor performance. The first reason is the existence of two local minima in the parameter space for the objective function of the fitting procedure. These minima correspond to qualitatively different sets of parameters, yet they both lie within biophysically plausible ranges. We show that, at realistic signal-to-noise ratio values, choosing between the two minima based on the associated objective function values is essentially impossible. Second, there is an ensemble of very low objective function values around each of these minima in the form of a pipe. The existence of such a direction in parameter space, along which the objective function profile is very flat, explains the bias and large uncertainty in parameter estimation, and the spurious parameter correlations: in the presence of noise, the minimum can be randomly displaced by a very large amount along each pipe. Our results suggest that the biophysical interpretation of dMRI model parameters crucially depends on establishing which of the minima is closer to the biophysical reality and the size of the uncertainty associated with each parameter
PMCID:4920129
PMID: 26615981
ISSN: 1099-1492
CID: 1863192
Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI
Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S
Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.
PMCID:5079350
PMID: 27812502
ISSN: 2213-1582
CID: 4214602
Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI
Sauwen, Nicolas; Sima, Diana M; Van Cauter, Sofie; Veraart, Jelle; Leemans, Alexander; Maes, Frederik; Himmelreich, Uwe; Van Huffel, Sabine
Tissue characterization in brain tumors and, in particular, in high-grade gliomas is challenging as a result of the co-existence of several intra-tumoral tissue types within the same region and the high spatial heterogeneity. This study presents a method for the detection of the relevant tumor substructures (i.e. viable tumor, necrosis and edema), which could be of added value for the diagnosis, treatment planning and follow-up of individual patients. Twenty-four patients with glioma [10 low-grade gliomas (LGGs), 14 high-grade gliomas (HGGs)] underwent a multi-parametric MRI (MP-MRI) scheme, including conventional MRI (cMRI), perfusion-weighted imaging (PWI), diffusion kurtosis imaging (DKI) and short-TE (1)H MRSI. MP-MRI parameters were derived: T2, T1 + contrast, fluid-attenuated inversion recovery (FLAIR), relative cerebral blood volume (rCBV), mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK) and the principal metabolites lipids (Lip), lactate (Lac), N-acetyl-aspartate (NAA), total choline (Cho), etc. Hierarchical non-negative matrix factorization (hNMF) was applied to the MP-MRI parameters, providing tissue characterization on a patient-by-patient and voxel-by-voxel basis. Tissue-specific patterns were obtained and the spatial distribution of each tissue type was visualized by means of abundance maps. Dice scores were calculated by comparing tissue segmentation derived from hNMF with the manual segmentation by a radiologist. Correlation coefficients were calculated between each pathologic tissue source and the average feature vector within the corresponding tissue region. For the patients with HGG, mean Dice scores of 78%, 85% and 83% were obtained for viable tumor, the tumor core and the complete tumor region. The mean correlation coefficients were 0.91 for tumor, 0.97 for necrosis and 0.96 for edema. For the patients with LGG, a mean Dice score of 85% and mean correlation coefficient of 0.95 were found for the tumor region. hNMF was also applied to reduced MRI datasets, showing the added value of individual MRI modalities.
PMID: 26458729
ISSN: 1099-1492
CID: 4214542
Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters
Collier, Quinten; Veraart, Jelle; Jeurissen, Ben; den Dekker, Arnold J; Sijbers, Jan
PURPOSE/OBJECTIVE:Diffusion-weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE and iRESTORE (Chang et al. Magn Reson Med 2005; 53:1088-1095; Chang et al. Magn Reson Med 2012; 68:1654-1663). However, these techniques are based on nonlinear estimators and are consequently computationally intensive. METHOD/METHODS:In this work, we present a new, robust, iteratively reweighted linear least squares (IRLLS) estimator. IRLLS performs a voxel-wise identification of outliers in diffusion-weighted magnetic resonance images, where it exploits the natural skewness of the data distribution to become more sensitive to both signal hyperintensities and signal dropouts. RESULTS:Both simulations and real data experiments were conducted to compare IRLLS with other state-of-the-art techniques. While IRLLS showed no significant loss in accuracy or precision, it proved to be substantially faster than both RESTORE and iRESTORE. In addition, IRLLS proved to be even more robust when considering the overestimation of the noise level or when the signal-to-noise ratio is low. CONCLUSION/CONCLUSIONS:The substantially shortened calculation time in combination with the increased robustness and accuracy, make IRLLS a practical and reliable alternative to current state-of-the-art techniques for the robust estimation of diffusion-weighted magnetic resonance parameters.
PMID: 24986440
ISSN: 1522-2594
CID: 4214512
One diffusion acquisition and different white matter models: How does microstructure change in human early development based on WMTI and NODDI?
Jelescu, Ileana O; Veraart, Jelle; Adisetiyo, Vitria; Milla, Sarah; Novikov, Dmitry S; Fieremans, Els
White matter microstructural changes during the first three years of healthy brain development are characterized using two different models developed for limited clinical diffusion data: White Matter Tract Integrity (WMTI) metrics from Diffusional Kurtosis Imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI). Both models reveal a non-linear increase in intra-axonal water fraction and in tortuosity of the extra-axonal space as a function of age, in the genu and splenium of the corpus callosum and the posterior limb of the internal capsule. The changes are consistent with expected behavior related to myelination and asynchrony of fiber development. The intra- and extracellular axial diffusivities as estimated with WMTI do not change appreciably in normal brain development. The quantitative differences in parameter estimates between models are examined and explained in the light of each model's assumptions and consequent biases, as highlighted in simulations. Finally, we discuss the feasibility of a model with fewer assumptions.
PMCID:4300243
PMID: 25498427
ISSN: 1053-8119
CID: 1410712
Diffusion Kurtosis Imaging: A Possible MRI Biomarker for AD Diagnosis?
Struyfs, Hanne; Van Hecke, Wim; Veraart, Jelle; Sijbers, Jan; Slaets, Sylvie; De Belder, Maya; Wuyts, Laura; Peters, Benjamin; Sleegers, Kristel; Robberecht, Caroline; Van Broeckhoven, Christine; De Belder, Frank; Parizel, Paul M; Engelborghs, Sebastiaan
The purpose of this explorative study was to investigate whether diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) parameter changes are reliable measures of white matter integrity changes in Alzheimer's disease (AD) patients using a whole brain voxel-based analysis (VBA). Therefore, age- and gender-matched patients with mild cognitive impairment (MCI) due to AD (n = 18), dementia due to AD (n = 19), and age-matched cognitively healthy controls (n = 14) were prospectively included. The magnetic resonance imaging protocol included routine structural brain imaging and DKI. Datasets were transformed to a population-specific atlas space. Groups were compared using VBA. Differences in diffusion and mean kurtosis measures between MCI and AD patients and controls were shown, and were mainly found in the splenium of the corpus callosum and the corona radiata. Hence, DTI and DKI parameter changes are suggestive of white matter changes in AD.
PMCID:4927852
PMID: 26444762
ISSN: 1875-8908
CID: 4214532
Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas
Van Cauter, Sofie; De Keyzer, Frederik; Sima, Diana M; Sava, Anca Croitor; D'Arco, Felice; Veraart, Jelle; Peeters, Ronald R; Leemans, Alexander; Van Gool, Stefaan; Wilms, Guido; Demaerel, Philippe; Van Huffel, Sabine; Sunaert, Stefan; Himmelreich, Uwe
BACKGROUND:We assessed the diagnostic accuracy of diffusion kurtosis imaging (DKI), dynamic susceptibility-weighted contrast-enhanced (DSC) MRI, and short echo time chemical shift imaging (CSI) for grading gliomas. METHODS:In this prospective study, 35 patients with cerebral gliomas underwent DKI, DSC, and CSI on a 3 T MR scanner. Diffusion parameters were mean diffusivity (MD), fractional anisotropy, and mean kurtosis (MK). Perfusion parameters were mean relative regional cerebral blood volume (rrCBV), mean relative regional cerebral blood flow (rrCBF), mean transit time, and relative decrease ratio (rDR). The diffusion and perfusion parameters along with 12 CSI metabolite ratios were compared among 22 high-grade gliomas and 14 low-grade gliomas (Mann-Whitney U-test, P < .05). Classification accuracy was determined with a linear discriminant analysis for each MR modality independently. Furthermore, the performance of a multimodal analysis is reported, using a decision-tree rule combining the statistically significant DKI, DSC-MRI, and CSI parameters with the lowest P-value. The proposed classifiers were validated on a set of subsequently acquired data from 19 clinical patients. RESULTS:Statistically significant differences among tumor grades were shown for MK, MD, mean rrCBV, mean rrCBF, rDR, lipids over total choline, lipids over creatine, sum of myo-inositol, and sum of creatine. DSC-MRI proved to be the modality with the best performance when comparing modalities individually, while the multimodal decision tree proved to be most accurate in predicting tumor grade, with a performance of 86%. CONCLUSIONS:Combining information from DKI, DSC-MRI, and CSI increases diagnostic accuracy to differentiate low- from high-grade gliomas, possibly providing diagnosis for the individual patient.
PMCID:4057134
PMID: 24470551
ISSN: 1523-5866
CID: 4214502
Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls
Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Leemans, Alexander; Jeurissen, Ben
PURPOSE/OBJECTIVE:Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. METHODS:Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. RESULTS:The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. CONCLUSION/CONCLUSIONS:If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods.
PMID: 23684865
ISSN: 1095-9572
CID: 4214492
Comprehensive framework for accurate diffusion MRI parameter estimation
Veraart, Jelle; Rajan, Jeny; Peeters, Ronald R; Leemans, Alexander; Sunaert, Stefan; Sijbers, Jan
During the last decade, many approaches have been proposed for improving the estimation of diffusion measures. These techniques have already shown an increase in accuracy based on theoretical considerations, such as incorporating prior knowledge of the data distribution. The increased accuracy of diffusion metric estimators is typically observed in well-defined simulations, where the assumptions regarding properties of the data distribution are known to be valid. In practice, however, correcting for subject motion and geometric eddy current deformations alters the data distribution tremendously such that it can no longer be expressed in a closed form. The image processing steps that precede the model fitting will render several assumptions on the data distribution invalid, potentially nullifying the benefit of applying more advanced diffusion estimators. In this work, we present a generic diffusion model fitting framework that considers some statistics of diffusion MRI data. A central role in the framework is played by the conditional least squares estimator. We demonstrate that the accuracy of that particular estimator can generally be preserved, regardless the applied preprocessing steps, if the noise parameter is known a priori. To fulfill that condition, we also propose an approach for the estimation of spatially varying noise levels.
PMID: 23132517
ISSN: 1522-2594
CID: 4214472