Searched for: in-biosketch:yes
person:kannak03
Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China
Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam
Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of CIPAHs during e-waste recycling operations. Dioxin-like toxic equivalency quotients (TEQs) for CIPAHs and PAHs in samples were calculated on the basis of relative potencies reported for CIPAHs and PAHs. The highest mean TEQ concentrations of CIPAHs (518 pg-TEQ/g) were found for workshop-floor dust, followed by leaves (361 pg-TEQ/g), electronic shredder waste (308 pg-TEQ/g), soil from the chemical industrial complex (146 pg-TEQ/g), and soil from the sites of the e-waste recycling facility (92.3 pg-TEQ/g). With one exception, the floor dust samples, the TEQ concentrations of CIPAHs found in multiple environmental matrices in this study were higher than the TEQ concentrations of PCDD/Fs in the same samples reported in our earlier study.
PMID: 19244996
ISSN: 0013-936x
CID: 4291142
Specific accumulation of perfluorochemicals in harbor seals (Phoca vitulina concolor) from the northwest Atlantic
Shaw, Susan; Berger, Michelle L; Brenner, Diane; Tao, Lin; Wu, Qian; Kannan, Kurunthachalam
Concentrations of perfluorochemicals (PFCs) including perfluoroalkylsulfonates (PFSAs), and perfluoroalkylcarboxylates (PFCAs) were determined in liver of harbor seals (n=68) collected from the northwest Atlantic between 2000 and 2007. Of ten PFCs measured, perfluorooctane sulfonate (PFOS) concentrations were the highest in liver (8-1388 ng/g, ww), followed by perfluoroundecanoic acid (PFUnDA) (<1-30.7 ng/g, ww). An unusual accumulation profile of long-chain (C7-C12) PFCAs, and the predominance of PFUnDA, followed by PFNA in seal liver suggested that fluorotelomer alcohols (FTOHs) may be a major source of PFCAs in the northwest Atlantic. No gender-related differences in the concentrations of individual PFCs or total PFCs were found. Concentrations of PFOS and PFDS were higher in tissues of the pups than the adults, whereas concentrations of the PFCAs were similar between pups and adults. PFOS concentrations in the pups were 2.6-fold higher than those in the adult females, suggesting the importance of maternal transfer of PFCs. Hepatic PFOS concentrations were strongly, positively correlated with PFOSA, PFDS and individual PFCAs, indicating that harbor seals are exposed simultaneously to these compounds. Temporal comparisons of hepatic PFC concentrations showed a marginal increase of PFOS and PFCAs in the adult seals from 2000 to 2007. Unlike the spatial trend observed for polychlorinated biphenyls (PCBs), no south to north (urban-rural-remote) decreasing trend was observed for PFCs, suggesting the presence of diffuse sources of PFC contamination throughout the northwest Atlantic.
PMID: 19101009
ISSN: 1879-1298
CID: 4291112
Oral microemulsions of paclitaxel: in situ and pharmacokinetic studies
Nornoo, Adwoa O; Zheng, Haian; Lopes, Luciana B; Johnson-Restrepo, Boris; Kannan, Kurunthachalam; Reed, Rachel
The overall goal of this study was to develop cremophor-free oral microemulsions of paclitaxel (PAC) to enhance its permeability and oral absorption. The mechanism of this enhancement, as well as characteristics of the microemulsions relevant to the increase in permeability and absorption of the low solubility, low permeability PAC was investigated. Phase diagrams were used to determine the macroscopic phase behavior of the microemulsions and to compare the efficiency of different surfactant-oil mixtures to incorporate water. The microemulsion region on the phase diagrams utilizing surfactant-myvacet oil combinations was in decreasing order: lecithin: butanol: myvacet oil (LBM, 48.5%)>centromix CPS: 1-butanol: myvacet oil (CPS, 45.15%)>capmul MCM: polysorbate 80: myvacet oil (CPM, 27.6%)>capryol 90: polysorbate 80: myvacet oil (CP-P80, 23.9%)>capmul: myvacet oil (CM, 20%). Oil-in-water (o/w) microemulsions had larger droplet sizes (687-1010 nm) than the water-in-oil (w/o) microemulsions (272-363 nm) when measured using a Zetasizer nano series particle size analyzer. Utilizing nuclear magnetic resonance spectroscopy (NMR), the self-diffusion coefficient (D) of PAC in CM, LBM and CPM containing 10% of deuterium oxide (D(2)O) was 2.24x10(-11), 1.97x10(-11) and 0.51x10(-11) m(2)/s, respectively. These values indicate the faster molecular mobility of PAC in the two w/o microemulsions (CM and LBM) than the o/w microemulsion--CPM. The in situ permeability of PAC through male CD-IGS rat intestine was 3- and 11-fold higher from LBM and CM, respectively, than that from the control clinical formulation, Taxol (CE, cremophor: ethanol) in a single pass perfusion study. PAC permeability was significantly increased in the presence of the pgp/CYP3A4 inhibitor cyclosporine A (CsA). This enhancement may be attributed to the pgp inhibitory effect of the surfactants, oil and/or the membrane perturbation effect of the surfactants. The oral disposition of PAC in CM, LBM and CPM compared to CE was studied in male CD-IGS rats after a single oral dose (20 mg/kg). The area-under-the-curve of PAC in CM was significantly larger than LBM, CPM and CE. Oral microemulsions of PAC were developed that increased both the permeability and AUC of PAC as compared to CE.
PMID: 18793723
ISSN: 1873-3441
CID: 4291032
Analysis of perchlorate in human saliva by liquid chromatography-tandem mass spectrometry
Oldi, John F; Kannan, Kurunthachalam
Perchlorate is both a naturally occurring anion and the disassociated anion of manufactured perchlorate salts. Because perchlorate has the abilityto blockthe uptake of iodide bythe thyroid gland, it is considered a potent thyroid hormone disruptor in humans. Methods for the analysis of perchlorate in biological matrices are needed to enable assessment of exposures and to elucidate adverse health outcomes. This study describes a method for the analysis of perchlorate in human saliva samples, using a simple dilution and ultrafiltration technique. Quantification of perchlorate in saliva samples using isotopically labeled standards (Cl18O4) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) offers great selectivity and sensitivity. Matrix effects in perchlorate analysis are compensated by spiking of saliva samples with an isotopically labeled internal standard for perchlorate. The LC-MS/MS calibration was found to be linear over the range from 0.01 to 50 ng/mL for 100 microL injections (i.e., 1-5000 pg injection). Fortified blank and matrix spike recoveries were between 93% and 97%, when spiked at a 2 ng/mL level. Relative standard deviations (RSDs) of daily calibration checks and fortified blanks were < or =10%. The relative percent difference, in laboratory duplicate analysis of original samples, was less than 1%. The method quantitation limit (LOQ) was determined to be 0.4 ng/mL, which includes a sample dilution factor. Salivary concentrations of a convenience sample of 83 persons working and/or living in Albany County of New York State ranged from 0.4 to 37 ng/mL with a mean concentration of 5.3 ng/mL Including sample preparation steps, 25 samples can be analyzed within 8 h. This selective and rapid method for analysis of perchlorate in human saliva will enable investigators and scientists to determine the extent of an individual's perchlorate exposure and, potentially, the compound's effects on human health. Analysis of perchlorate in saliva from a population (n = 86) with no major sources of exposures, using the method developed in this study, suggests the ubiquitous occurrence of this compound in saliva.
PMID: 19209597
ISSN: 0013-936x
CID: 4291132
Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States
Tao, Lin; Ma, Jing; Kunisue, Tatsuya; Libelo, E Laurence; Tanabe, Shinsuke; Kannan, Kurunthachalam
The occurrence of perfluorinated compounds (PFCs) in human blood is known to be widespread; nevertheless, the sources of exposure to humans, including infants, are not well understood. In this study, breast milk collected from seven countries in Asia was analyzed (n=184) for nine PFCs, including perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). In addition, five brands of infant formula (n=21) and 11 brands of dairy milk (n=12) collected from retail stores in the United States were analyzed, for comparison with PFC concentrations previously reported for breast milk from the U.S. PFOS was the predominant PFC detected in almost all Asian breast milk samples, followed by perfluorohexanesulfonate (PFHxS) and PFOA. Median concentrations of PFOS in breast milk from Asian countries varied significantly;the lowest concentration of 39.4 pg/mL was found in India, and the highest concentration of 196 pg/mL was found in Japan. The measured concentrations were similarto or less than the concentrations previously reported from Sweden, the United States, and Germany (median, 106-166 pg/mL). PFHxS was found in more than 70% of the samples analyzed from Japan, Malaysia, Philippines, and Vietnam, at mean concentrations ranging from 6.45 (Malaysia) to 15.8 (Philippines) pg/mL PFOA was found frequently only in samples from Japan; the mean concentration for that country was 77.7 pg/mL. None of the PFCs were detected in the infant-formula or dairy-milk samples from the U.S. except a few samples that contained concentrations close to the limit of detection. The estimated average daily intake of PFOS by infants from seven Asian countries, via breastfeeding, was 11.8 +/- 10.6 ng/kg bw/ day; this value is 7-12 times higher than the estimated adult dietary intakes previously reported from Germany, Canada, and Spain. The average daily intake of PFOA by Japanese infants was 9.6 +/- 4.9 ng/kg bw/day, a value 3-10 times greater than the estimated adult dietary intakes reported from Germany and Canada. The highest estimated daily intakes of PFOS and PFOA by infants from seven Asian countries studied were 1-2 orders of magnitude below the tolerable daily intake values recommended by the U.K. Food Standards Agency.
PMID: 19068854
ISSN: 0013-936x
CID: 4291092
Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China
Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua
Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion and dermal exposure (2.3 and 0.363 pg TEQ/kg bw/day for children and adults, respectively) were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site (0.021 and 0.0053 pg TEQ/kg bw/day for children and adults, respectively), implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations.
PMID: 19068802
ISSN: 0013-936x
CID: 4291082
Comparison of extraction and quantification methods of perfluorinated compounds in human plasma, serum, and whole blood
Reagen, William K; Ellefson, Mark E; Kannan, Kurunthachalam; Giesy, John P
Perfluorinated compounds are ubiquitous in the environment and have been reported to occur in human blood. Accurate risk assessments require accurate measurements of exposures, but identification and quantification of PFCs in biological matrices can be affected by both ion suppression and enhancement in liquid chromatography-tandem mass spectrometry techniques (LC/MS-MS). A study was conducted to quantify potential biases in LC/MS-MS quantification methods. Using isotopically labeled perfluorooctanoic acid ([(13)C(2)]-PFOA), perfluorononanoic acid ([(13)C(2)]-PFNA), and ammonium perfluorooctanesulfonate ([(18)O(2)]-PFOS) spiked tissues, ion-pairing extraction, solid-phase extraction, and protein precipitation sample preparation techniques were compared. Analytical accuracy was assessed using both solvent calibration and matrix-matched calibration for quantification. Data accuracy and precision of 100+/-15% was demonstrated in both human sera and plasma for all three sample preparation techniques when matrix-matched calibration was used in quantification. In contrast, quantification of ion-pairing extraction data using solvent calibration in combination with a surrogate internal standard resulted in significant analytical biases for all target analytes. The accuracy of results, based on solvent calibration was highly variable and dependent on the serum and plasma matrices, the specific target analyte [(13)C(2)]-PFOA, [(13)C(2)]-PFNA, or [(18)O(2)]-PFOS, the target analyte concentration, the LC/MS-MS instrumentation used in data generation, and the specific surrogate internal standard used in quantification. These results suggest that concentrations of PFCs reported for human blood using surrogate internal standards in combination with external solvent calibration can be inaccurate unless biases are accounted for in data quantification.
PMID: 18929010
ISSN: 1873-4324
CID: 4291062
Potential effects of perfluorinated compounds in common cormorants from Lake Biwa, Japan: an implication from the hepatic gene expression profiles by microarray
Nakayama, Kei; Iwata, Hisato; Tao, Lin; Kannan, Kurunthachalam; Imoto, Mai; Kim, Eun-Young; Tashiro, Kosuke; Tanabe, Shinsuke
Contamination levels of perfluorinated compounds (PFCs), including perfluorooctanesulfonate (PFOS), perfluorononanoic acid (PFNA), perfluorooctane sulfonamide (PFOSA), perfluorohexanesulfonate (PFHS), and perfluorooctanoic acid (PFOA), were determined in the livers of wild common cormorants (Phalacrocorax carbo) from Lake Biwa, Japan. Potential effects of PFCs alone and combined effects by complex mixture of PFCs and dioxins and related compounds (DRCs) were also assessed by gene expression profiling using a cormorant oligo array. Perfluorooctanesulfonate, PFNA, and PFOSA were detected in almost all liver samples analyzed, while concentrations of PFHS and PFOA were below the limit of quantification. The microarray data analyses revealed that hepatic PFC levels were correlated with the expression of 74 genes. Real-time reverse-transcript polymerase chain reaction data demonstrated that PFOS concentration was positively correlated with mRNA levels of glutathione peroxidase 1 and glutathione S-transferase alpha 3 and negatively correlated with levels of heat shock 70-kDa protein 8 and tumor rejection antigen 1 mRNAs. These results suggest the induction of antioxidant enzymes in response to oxidative stress caused by PFCs and the suppression of molecular chaperones, leading to reduction in protein stability. Moreover, multiple regression analyses identified seven significant models in which certain genes showed expression levels altered by accumulation of PFCs and DRCs. The regression models explained associations with cytochrome P450 1A mRNA and protein expression levels, and its catalytic activity, ethoxyresorufin-O-deethylase of both PFNA and the 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalent levels. Thus, the regression models suggested the potential of PFCs to enhance toxicities of DRCs. Since mixture toxicity is an urgent issue, further study is required to understand the effects of mixtures of PFCs and DRCs in wild cormorants.
PMID: 18611081
ISSN: 0730-7268
CID: 4290992
Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products
Horii, Yuichi; Kannan, Kurunthachalam
The determination of organosiloxanes in consumer products is important for the evaluation and characterization of sources of human and environmental exposures. In this study, we determined concentrations of cyclic siloxanes [octamethylcyclotetrasiloxane (D(4)), decamethylcyclopentasiloxane (D(5)), dodecamethylcyclohexasiloxane (D(6))], tetradecamethylcycloheptasiloxane (D(7))] and linear siloxanes (L(4) to L(14)) in a variety of consumer products (n = 76), including hair-care products, skin lotions, body washes, cosmetics, nursing nipples (i.e., pacifiers), cookware, and household sanitation products such as cleansers and furniture polishes, using gas chromatography-mass spectrometry with selected ion monitoring. Prior to the analysis of samples, a method was developed to reduce the contamination arising from organosiloxanes present in certain gas chromatograph (GC) parts, such as the inlet septum; use of a Restek BTO septum at an inlet temperature of 200 degrees C gave the lowest background level (D(4): 0.8 pg; D(5): 0.3 pg; D(6): 0.2 pg). Concentrations of cyclic siloxanes in consumer products analyzed ranged from <0.35 to 9380 microg/g, from <0.39 to 81,800 microg/g, from <0.33 to 43,100 microg/g, and from <0.42 to 846 microg/g for D(4), D(5), D(6), and D(7), respectively. Concentrations of linear siloxanes varied from <0.059 to 73,000 microg/g. More than 50% of the samples analyzed contained D(4), D(5), or D(6). Cyclic siloxanes were predominant in most of the sample categories; D(5) was predominant in hair-care products, skin lotions, and cosmetics; D(6) or D(7) was predominant in rubber products, including nipples, cookware, and sealants. Potential daily exposure to total organosiloxanes (sum of cyclic and linear siloxanes) from the use of personal-care products by adult women in the United States has been estimated to be 307 mg. Significant positive correlations (p < 0.01) existed in our study between D(4) and D(7), D(4) and linear siloxanes, D(5) and D(6), and D(5) and linear siloxanes. The correlations can be related to the composition of organosiloxanes used in consumer products. The results of our study suggest that a wide variety of consumer products that are used on a daily basis contain cyclic and linear siloxanes and these products can contribute considerably to human exposures.
PMID: 18443842
ISSN: 1432-0703
CID: 4290922
Time trends and transplacental transfer of perfluorinated compounds in melon-headed whales stranded along the Japanese coast in 1982, 2001/2002, and 2006
Hart, Kimberly; Kannan, Kurunthachalam; Isobe, Tomohiko; Takahashi, Shin; Yamada, Tadasu K; Miyazaki, Nobuyuki; Tanabe, Shinsuke
As a result of the phase-out of production of perfluorooctanesulfonyl-based compounds by a major producer, concentrations of perfluorooctanesulfonate (PFOS) in marine mammals from North American and European coastal waters have been declining since the early 2000s. Nevertheless, temporal trends in perfluorochemical (PFC) concentrations in marine mammals from Asian coastal waters have not been examined. In this study, PFCs were determined in livers of melon-headed whales (Peponocephala electra) collected along the coast of Japan, from three mass strandings that occurred during the past 25 years. Concentrations of nine PFCs were determined in livers of 48 melon-headed whales that were collected during strandings in 1982, 2001/2002, and 2006. In addition, concentrations in liver tissues obtained from two pregnant females and their fetuses were compared for determination of transplacental transfer rates of PFCs during gestation. PFOS and perfluorooctanesulfonamide (PFOSA) were the predominant PFCs found in livers of melon-headed whales collected in 1982 (n = 22). PFOS, PFOSA, perfluoroundecanoate (PFUnDA), perfluorododecanoate (PFDoDA), perfluorodecanoate (PFDA), and perfluorononanoate (PFNA) were found in whales collected in 2001/2002 (n = 21) and in 2006 (n = 5). Concentrations of PFOS and PFOSA were approximately 10-fold higher in 2001/2002 than in 1982. Whereas concentrations of PFOSA then declined by 2-fold from 2001/ 2002 to 2006, concentrations of PFOS and perfluorocarboxylates did not decline after 2001/2002. Conversely, concentrations of PFNA and PFDA increased significantly from 2001/2002 to 2006. The proportion of perfluoroalkylsulfonates in total PFC concentrations decreased from 75% in 1982 to 51% in 2006. Conversely, the contribution of perfluorocarboxylates to total PFC concentrations increased from 25% in 1982 to 49% in 2006. PFUnDA was the major perfluorocarboxylate found in whale livers collected after 2000. Analysis of paired samples of mother-fetus demonstrated that the transplacental transfer rates of PFCs were higher than those for PCBs and PBDEs.
PMID: 18939537
ISSN: 0013-936x
CID: 4291072