Searched for: in-biosketch:yes
person:barret02
Role of Myeloperoxidase Oxidants in the Modulation of Cellular Lysosomal Enzyme Function: A Contributing Factor to Macrophage Dysfunction in Atherosclerosis?
Ismael, Fahd O; Barrett, Tessa J; Sheipouri, Diba; Brown, Bronwyn E; Davies, Michael J; Hawkins, Clare L
Low-density lipoprotein (LDL) is the major source of lipid within atherosclerotic lesions. Myeloperoxidase (MPO) is present in lesions and forms the reactive oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). These oxidants modify LDL and have been strongly linked with the development of atherosclerosis. In this study, we examined the effect of HOCl, HOSCN and LDL pre-treated with these oxidants on the function of lysosomal enzymes responsible for protein catabolism and lipid hydrolysis in murine macrophage-like J774A.1 cells. In each case, the cells were exposed to HOCl or HOSCN or LDL pre-treated with these oxidants. Lysosomal cathepsin (B, L and D) and acid lipase activities were quantified, with cathepsin and LAMP-1 protein levels determined by Western blotting. Exposure of J774A.1 cells to HOCl or HOSCN resulted in a significant decrease in the activity of the Cys-dependent cathepsins B and L, but not the Asp-dependent cathepsin D. Cathepsins B and L were also inhibited in macrophages exposed to HOSCN-modified, and to a lesser extent, HOCl-modified LDL. No change was seen in cathepsin D activity or the expression of the cathepsin proteins or lysosomal marker protein LAMP-1. The activity of lysosomal acid lipase was also decreased on treatment of macrophages with each modified LDL. Taken together, these results suggest that HOCl, HOSCN and LDL modified by these oxidants could contribute to lysosomal dysfunction and thus perturb the cellular processing of LDL, which could be important during the development of atherosclerosis.
PMCID:5173366
PMID: 27997605
ISSN: 1932-6203
CID: 3290642
Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo [Meeting Abstract]
Iqbal, A J; Barrett, T J; Taylor, L; McNeill, E; Reico, C; White, G E; Brodermann, M H; Cooper, D; Channon, K M; Greaves, D R
Apolipoprotein A1 (apoA1) is the major protein component of high density lipoprotein (HDL) and has been reported to have anti-inflammatory properties in addition to its role in reverse cholesterol transport. To better understand the anti-inflammatory activity of apoA1 we explored the effects on monocyte and macrophage chemotaxis in vitro and monocyte trafficking in vivo. Acute apoA1 treatment (20-60 min) induced a substantial (50-90 %) decrease in murine macrophage chemotaxis in real-time assays to a range of pathophysiologically relevant chemoattractants (CCL2, CCL5, chemerin and complement C5a). In addition, human monocyte chemotaxis to CCL2 was abrogated by short-term treatment with apoA1, and human PBMC exposed to apoA1 for 45 min showed reduced rolling, adhesion and transmigration in experiments with activated HUVEC monolayers under physiological flow conditions. Remarkably, acute pre-treatment of mouse GFP+ monocytes with apoA1 ex vivo reduced recruitment by 65 % (p<0.01) following adoptive transfer into an on-going peritonitis model. Macrophages exposed to acute pre-treatment with the non-specific cholesterol depleting agent methyl-s-cyclodextrin or macrophages from ATP-binding cassette transporter A1 (ABCA1) null mice display a similar reduction in macrophage migration, indicating that the mechanism for A1's effects is independent of its role in reverse cholesterol transport. We also demonstrate that the rapid effects of apoA1 on monocyte/macrophage recruitment occur via reducing the activity of PI3kinase, a signalling pathway important for actin-cytoskeleton reorganisation. Collectively our data support a model in which rapid depletion/reorganisation of membrane cholesterol independent of ABCA1 transporters renders monocytes/macrophages no longer sensitive to chemoattractants. Our data suggests that acute infusion of apoA1 or apoA1 mimetics could significantly reduce inflammatory myeloid cell recruitment via effects on responsiveness to multiple chemoattractants
EMBASE:71973488
ISSN: 1023-3830
CID: 1747732
Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice
Willecke, Florian; Scerbo, Diego; Nagareddy, Prabhakara; Obunike, Joseph C; Barrett, Tessa J; Abdillahi, Mariane L; Trent, Chad M; Huggins, Lesley A; Fisher, Edward A; Drosatos, Konstantinos; Goldberg, Ira J
OBJECTIVE: Diabetic hypertriglyceridemia is thought to be primarily driven by increased hepatic de novo lipogenesis. However, experiments in animal models indicated that insulin deficiency should decrease hepatic de novo lipogenesis and reduce plasma triglyceride levels. APPROACH AND RESULTS: To address the discrepancy between human data and genetically altered mouse models, we investigated whether insulin-deficient diabetic mice had triglyceride changes that resemble those in diabetic humans. Streptozotocin-induced insulin deficiency increased plasma triglyceride levels in mice. Contrary to the mouse models with impaired hepatic insulin receptor signaling, insulin deficiency did not reduce hepatic triglyceride secretion and de novo lipogenesis-related gene expression. Diabetic mice had a marked decrease in postprandial triglycerides clearance, which was associated with decreased lipoprotein lipase and peroxisome proliferator-activated receptor alpha mRNA levels in peripheral tissues and decreased lipoprotein lipase activity in skeletal muscle, heart, and brown adipose tissue. Diabetic heterozygous lipoprotein lipase knockout mice had markedly elevated fasting plasma triglyceride levels and prolonged postprandial triglycerides clearance. CONCLUSIONS: Insulin deficiency causes hypertriglyceridemia by decreasing peripheral lipolysis and not by an increase in hepatic triglycerides production and secretion.
PMCID:4270817
PMID: 25395613
ISSN: 1079-5642
CID: 1448462
LXR-Mediated ABCA1 Expression and Function Are Modulated by High Glucose and PRMT2
Hussein, Maryem A; Shrestha, Elina; Ouimet, Mireille; Barrett, Tessa J; Leone, Sarah; Moore, Kathryn J; Herault, Yann; Fisher, Edward A; Garabedian, Michael J
High cholesterol and diabetes are major risk factors for atherosclerosis. Regression of atherosclerosis is mediated in part by the Liver X Receptor (LXR) through the induction of genes involved in cholesterol transport and efflux. In the context of diabetes, regression of atherosclerosis is impaired. We proposed that changes in glucose levels modulate LXR-dependent gene expression. Using a mouse macrophage cell line (RAW 264.7) and primary bone marrow derived macrophages (BMDMs) cultured in normal or diabetes relevant high glucose conditions we found that high glucose inhibits the LXR-dependent expression of ATP-binding cassette transporter A1 (ABCA1), but not ABCG1. To probe for this mechanism, we surveyed the expression of a host of chromatin-modifying enzymes and found that Protein Arginine Methyltransferase 2 (PRMT2) was reduced in high compared to normal glucose conditions. Importantly, ABCA1 expression and ABCA1-mediated cholesterol efflux were reduced in Prmt2-/- compared to wild type BMDMs. Monocytes from diabetic mice also showed decreased expression of Prmt2 compared to non-diabetic counterparts. Thus, PRMT2 represents a glucose-sensitive factor that plays a role in LXR-mediated ABCA1-dependent cholesterol efflux and lends insight to the presence of increased atherosclerosis in diabetic patients.
PMCID:4545936
PMID: 26288135
ISSN: 1932-6203
CID: 1732262
Tryptophan oxidation in proteins exposed to thiocyanate-derived oxidants
Bonifay, Vincent; Barrett, Tessa J; Pattison, David I; Davies, Michael J; Hawkins, Clare L; Ashby, Michael T
Human defensive peroxidases, including lactoperoxidase (LPO) and myeloperoxidase (MPO), are capable of catalyzing the oxidation of halides (X(-)) by H2O2 to give hypohalous acids (HOX) for the purpose of cellular defense. Substrate selectivity depends upon the relative abundance of the halides, but the pseudo-halide thiocyanate (SCN(-)) is a major substrate, and sometimes the exclusive substrate, of all defensive peroxidases in most physiologic fluids. The resulting hypothiocyanous acid (HOSCN) has been implicated in cellular damage via thiol oxidation. While thiols are believed to be the primary target of HOSCN in vivo, Trp residues have also been implicated as targets for HOSCN. However, the mechanism involved in HOSCN-mediated Trp oxidation was not established. Trp residues in proteins appeared to be susceptible to oxidation by HOSCN, whereas free Trp and Trp residues in small peptides were found to be unreactive. We show that HOSCN-induced Trp oxidation is dependent on pH, with oxidation of free Trp, and Trp-containing peptides observed when the pH is below 2. These conditions mimic those employed previously to precipitate proteins after treatment with HOSCN, which accounts for the discrepancy in the results reported for proteins versus free Trp and small peptides. The reactant in these cases may be thiocyanogen ((SCN)2), which is produced by comproportionation of HOSCN and SCN(-) at low pH. Reaction of thiocyanate-derived oxidants with protein Trp residues at low pH results in the formation of a number of oxidation products, including mono- and di-oxygenated derivatives, which are also formed with other hypohalous acids. Our data suggest that significant modification of Trp by HOSCN in vivo is likely to have limited biological relevance.
PMID: 25172223
ISSN: 1096-0384
CID: 3290612
miR33 Inhibition Overcomes Deleterious Effects of Diabetes Mellitus on Atherosclerosis Plaque Regression in Mice
Distel, Emilie; Barrett, Tessa J; Chung, Kellie; Girgis, Natasha M; Parathath, Saj; Essau, Christine C; Murphy, Andrew J; Moore, Kathryn J; Fisher, Edward A
RATIONALE: Diabetes mellitus increases cardiovascular disease risk in humans and remains elevated despite cholesterol-lowering therapy with statins. Consistent with this, in mouse models, diabetes mellitus impairs atherosclerosis plaque regression after aggressive cholesterol lowering. MicroRNA 33 (miR33) is a key negative regulator of the reverse cholesterol transport factors, ATP-binding cassette transporter A1 and high-density lipoprotein, which suggested that its inhibition may overcome this impairment. OBJECTIVE: To assess the effects of miR33 inhibition on atherosclerosis regression in diabetic mice. METHODS AND RESULTS: Reversa mice, which are deficient in the low-density lipoprotein receptor and in which hypercholesterolemia is reversed by conditional inactivation of the microsomal triglyceride transfer protein gene, were placed on an atherogenic diet for 16 weeks, then either made diabetic by streptozotocin injection or kept normoglycemic. Lipid-lowering was induced by microsomal triglyceride transfer protein gene inactivation, and mice were treated with anti-miR33 or control oligonucleotides. Although regression was impaired in diabetic mice treated with control oligonucleotides, anti-miR33 treatment decreased plaque macrophage content and inflammatory gene expression in these mice. The decreased macrophage content in anti-miR33 treated diabetic mice was associated with a blunting of hyperglycemia-induced monocytosis and reduced monocyte recruitment to the plaque, which was traced to an inhibition of the proliferation of bone marrow monocyte precursors associated with the upregulation of their Abca1. CONCLUSIONS: miR33 inhibition overcomes deleterious effects of diabetes mellitus in atherosclerosis regression in mice, which suggests a therapeutic strategy in diabetic patients, who remain at elevated cardiovascular disease risk, despite plasma cholesterol lowering.
PMCID:4194153
PMID: 25201910
ISSN: 0009-7330
CID: 1310842
Effects of native and myeloperoxidase-modified apolipoprotein a-I on reverse cholesterol transport and atherosclerosis in mice
Hewing, Bernd; Parathath, Saj; Barrett, Tessa; Chung, Wing Ki Kellie; Astudillo, Yaritzy M; Hamada, Tadateru; Ramkhelawon, Bhama; Tallant, Thomas C; Yusufishaq, Mohamed Shaif S; Didonato, Joseph A; Huang, Ying; Buffa, Jennifer; Berisha, Stela Z; Smith, Jonathan D; Hazen, Stanley L; Fisher, Edward A
OBJECTIVE: Preclinical and clinical studies have shown beneficial effects of infusions of apolipoprotein A-I (ApoA-I) on atherosclerosis. ApoA-I is also a target for myeloperoxidase-mediated oxidation, leading in vitro to a loss of its ability to promote ATP-binding cassette transporter A1-dependent macrophage cholesterol efflux. Therefore, we hypothesized that myeloperoxidase-mediated ApoA-I oxidation would impair its promotion of reverse cholesterol transport in vivo and the beneficial effects on atherosclerotic plaques. APPROACH AND RESULTS: ApoA-I(-/-) or apolipoprotein E-deficient mice were subcutaneously injected with native human ApoA-I, oxidized human ApoA-I (myeloperoxidase/hydrogen peroxide/chloride treated), or carrier. Although early postinjection (8 hours) levels of total ApoA-I in plasma were similar for native versus oxidized human ApoA-I, native ApoA-I primarily resided within the high-density lipoprotein fraction, whereas the majority of oxidized human ApoA-I was highly cross-linked and not high-density lipoprotein particle associated, consistent with impaired ATP-binding cassette transporter A1 interaction. In ApoA-I(-/-) mice, ApoA-I oxidation significantly impaired reverse cholesterol transport in vivo. In advanced aortic root atherosclerotic plaques of apolipoprotein E-deficient mice, native ApoA-I injections led to significant decreases in lipid content, macrophage number, and an increase in collagen content; in contrast, oxidized human ApoA-I failed to mediate these changes. The decrease in plaque macrophages with native ApoA-I was accompanied by significant induction of their chemokine receptor CCR7. Furthermore, only native ApoA-I injections led to a significant reduction of inflammatory M1 and increase in anti-inflammatory M2 macrophage markers in the plaques. CONCLUSIONS: Myeloperoxidase-mediated oxidation renders ApoA-I dysfunctional and unable to (1) promote reverse cholesterol transport, (2) mediate beneficial changes in the composition of atherosclerotic plaques, and (3) pacify the inflammatory status of plaque macrophages.
PMCID:3966977
PMID: 24407029
ISSN: 1079-5642
CID: 866832
Malignant Conditions of the Vulva
Chapter by: Vargas, Hebert A; Barrett, T; Sala, Evis
in: Abdominal imaging by Hamm, Bernd; Ros, Pablo R [Eds]
Berlin ; New York : Springer, c2013
pp. 2175-2182
ISBN: 9783642151392
CID: 5455522
Inactivation of thiol-dependent enzymes by hypothiocyanous acid: role of sulfenyl thiocyanate and sulfenic acid intermediates
Barrett, Tessa J; Pattison, David I; Leonard, Stephen E; Carroll, Kate S; Davies, Michael J; Hawkins, Clare L
Myeloperoxidase (MPO) forms reactive oxidants including hypochlorous and hypothiocyanous acids (HOCl and HOSCN) under inflammatory conditions. HOCl causes extensive tissue damage and plays a role in the progression of many inflammatory-based diseases. Although HOSCN is a major MPO oxidant, particularly in smokers, who have elevated plasma thiocyanate, the role of this oxidant in disease is poorly characterized. HOSCN induces cellular damage by targeting thiols. However, the specific targets and mechanisms involved in this process are not well defined. We show that exposure of macrophages to HOSCN results in the inactivation of intracellular enzymes, including creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In each case, the active-site thiol residue is particularly sensitive to oxidation, with evidence for reversible inactivation and the formation of sulfenyl thiocyanate and sulfenic acid intermediates, on treatment with HOSCN (less than fivefold molar excess). Experiments with DAz-2, a cell-permeable chemical trap for sulfenic acids, demonstrate that these intermediates are formed on many cellular proteins, including GAPDH and CK, in macrophages exposed to HOSCN. This is the first direct evidence for the formation of protein sulfenic acids in HOSCN-treated cells and highlights the potential of this oxidant to perturb redox signaling processes.
PMCID:3523338
PMID: 22248862
ISSN: 1873-4596
CID: 3290602
Hypothiocyanous acid: benign or deadly?
Barrett, Tessa J; Hawkins, Clare L
Hypothiocyanous acid (HOSCN) is produced in biological systems by the peroxidase-catalyzed reaction of thiocyanate (SCN(-)) with H(2)O(2). This oxidant plays an important role in the human immune system, owing to its potent bacteriostatic properties. Significant amounts of HOSCN are also formed by immune cells under inflammatory conditions, yet the reactivity of this oxidant with host tissue is poorly characterized. Traditionally, HOSCN has been viewed as a mild oxidant, which is innocuous to mammalian cells. Indeed, recent studies show that the presence of SCN(-) in airways has a protective function, by preventing the formation of other, more damaging, inflammatory oxidants. However, there is an increasing body of evidence that challenges this dogma, showing that the selectivity of HOSCN for specific thiol-containing cellular targets results in the initiation of significant cellular damage. This propensity to induce cellular dysfunction is gaining considerable interest, particularly in the cardiovascular field, as smokers have elevated plasma SCN(-), the precursor for HOSCN. This review will outline the beneficial and detrimental aspects of HOSCN formation in biological systems.
PMID: 22053976
ISSN: 1520-5010
CID: 3290592