Searched for: in-biosketch:yes
person:buzsag01
The Functional Anatomy of Time: What and When in the Brain
Friston, Karl; Buzsaki, Gyorgy
This Opinion article considers the implications for functional anatomy of how we represent temporal structure in our exchanges with the world. It offers a theoretical treatment that tries to make sense of the architectural principles seen in mammalian brains. Specifically, it considers a factorisation between representations of temporal succession and representations of content or, heuristically, a segregation into when and what. This segregation may explain the central role of the hippocampus in neuronal hierarchies while providing a tentative explanation for recent observations of how ordinal sequences are encoded. The implications for neuroanatomy and physiology may have something important to say about how self-organised cell assembly sequences enable the brain to exhibit purposeful behaviour that transcends the here and now.
PMID: 27261057
ISSN: 1879-307x
CID: 2183352
Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy
Gelinas, Jennifer N; Khodagholy, Dion; Thesen, Thomas; Devinsky, Orrin; Buzsaki, Gyorgy
Interactions between the hippocampus and the cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but the mechanisms by which they interact with physiological patterns of network activity are mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation, and that they are precisely coordinated with spindle oscillations in the prefrontal cortex during nonrapid-eye-movement (NREM) sleep. This coordination surpasses the normal physiological ripple-spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during rapid-eye movement (REM) sleep and wakefulness-behavioral states that do not naturally express these oscillations-by generating a cortical 'down' state. In a pilot clinical examination of four subjects with focal epilepsy, we confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions. These findings imply that IEDs may impair memory via the misappropriation of physiological mechanisms for hippocampal-cortical coupling, which suggests a target for the treatment of memory impairment in epilepsy.
PMCID:4899094
PMID: 27111281
ISSN: 1546-170x
CID: 2136062
What is memory? The present state of the engram
Poo, Mu-Ming; Pignatelli, Michele; Ryan, Tomas J; Tonegawa, Susumu; Bonhoeffer, Tobias; Martin, Kelsey C; Rudenko, Andrii; Tsai, Li-Huei; Tsien, Richard W; Fishell, Gord; Mullins, Caitlin; Goncalves, J Tiago; Shtrahman, Matthew; Johnston, Stephen T; Gage, Fred H; Dan, Yang; Long, John; Buzsaki, Gyorgy; Stevens, Charles
The mechanism of memory remains one of the great unsolved problems of biology. Grappling with the question more than a hundred years ago, the German zoologist Richard Semon formulated the concept of the engram, lasting connections in the brain that result from simultaneous "excitations", whose precise physical nature and consequences were out of reach of the biology of his day. Neuroscientists now have the knowledge and tools to tackle this question, however, and this Forum brings together leading contemporary views on the mechanisms of memory and what the engram means today.
PMCID:4874022
PMID: 27197636
ISSN: 1741-7007
CID: 2531292
Network Homeostasis and State Dynamics of Neocortical Sleep
Watson, Brendon O; Levenstein, Daniel; Greene, J Palmer; Gelinas, Jennifer N; Buzsaki, Gyorgy
Sleep exerts many effects on mammalian forebrain networks, including homeostatic effects on both synaptic strengths and firing rates. We used large-scale recordings to examine the activity of neurons in the frontal cortex of rats and first observed that the distribution of pyramidal cell firing rates was wide and strongly skewed toward high firing rates. Moreover, neurons from different parts of that distribution were differentially modulated by sleep substates. Periods of nonREM sleep reduced the activity of high firing rate neurons and tended to upregulate firing of slow-firing neurons. By contrast, the effect of REM was to reduce firing rates across the entire rate spectrum. Microarousals, interspersed within nonREM epochs, increased firing rates of slow-firing neurons. The net result of sleep was to homogenize the firing rate distribution. These findings are at variance with current homeostatic models and provide a novel view of sleep in adjusting network excitability.
PMCID:4873379
PMID: 27133462
ISSN: 1097-4199
CID: 2531212
Excitation-Transcription Coupling in Parvalbumin-Positive Interneurons Employs a Novel CaM Kinase-Dependent Pathway Distinct from Excitatory Neurons
Cohen, Samuel M; Ma, Huan; Kuchibhotla, Kishore V; Watson, Brendon O; Buzsaki, Gyorgy; Froemke, Robert C; Tsien, Richard W
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by gammaCaMKI, not gammaCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.
PMCID:4866871
PMID: 27041500
ISSN: 1097-4199
CID: 2065982
Spike sorting for large, dense electrode arrays
Rossant, Cyrille; Kadir, Shabnam N; Goodman, Dan F M; Schulman, John; Hunter, Maximilian L D; Saleem, Aman B; Grosmark, Andres; Belluscio, Mariano; Denfield, George H; Ecker, Alexander S; Tolias, Andreas S; Solomon, Samuel; Buzsaki, Gyorgy; Carandini, Matteo; Harris, Kenneth D
Developments in microfabrication technology have enabled the production of neural electrode arrays with hundreds of closely spaced recording sites, and electrodes with thousands of sites are under development. These probes in principle allow the simultaneous recording of very large numbers of neurons. However, use of this technology requires the development of techniques for decoding the spike times of the recorded neurons from the raw data captured from the probes. Here we present a set of tools to solve this problem, implemented in a suite of practical, user-friendly, open-source software. We validate these methods on data from the cortex, hippocampus and thalamus of rat, mouse, macaque and marmoset, demonstrating error rates as low as 5%.
PMCID:4817237
PMID: 26974951
ISSN: 1546-1726
CID: 2031872
Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences
Grosmark, Andres D; Buzsaki, Gyorgy
Cell assembly sequences during learning are "replayed" during hippocampal ripples and contribute to the consolidation of episodic memories. However, neuronal sequences may also reflect preexisting dynamics. We report that sequences of place-cell firing in a novel environment are formed from a combination of the contributions of a rigid, predominantly fast-firing subset of pyramidal neurons with low spatial specificity and limited change across sleep-experience-sleep and a slow-firing plastic subset. Slow-firing cells, rather than fast-firing cells, gained high place specificity during exploration, elevated their association with ripples, and showed increased bursting and temporal coactivation during postexperience sleep. Thus, slow- and fast-firing neurons, although forming a continuous distribution, have different coding and plastic properties.
PMCID:4919122
PMID: 27013730
ISSN: 1095-9203
CID: 2076942
Monolithically Integrated muLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals
Wu, Fan; Stark, Eran; Ku, Pei-Cheng; Wise, Kensall D; Buzsaki, Gyorgy; Yoon, Euisik
We report a scalable method to monolithically integrate microscopic light emitting diodes (muLEDs) and recording sites onto silicon neural probes for optogenetic applications in neuroscience. Each muLED and recording site has dimensions similar to a pyramidal neuron soma, providing confined emission and electrophysiological recording of action potentials and local field activity. We fabricated and implanted the four-shank probes, each integrated with 12 muLEDs and 32 recording sites, into the CA1 pyramidal layer of anesthetized and freely moving mice. Spikes were robustly induced by 60 nW light power, and fast population oscillations were induced at the microwatt range. To demonstrate the spatiotemporal precision of parallel stimulation and recording, we achieved independent control of distinct cells approximately 50 mum apart and of differential somato-dendritic compartments of single neurons. The scalability and spatiotemporal resolution of this monolithic optogenetic tool provides versatility and precision for cellular-level circuit analysis in deep structures of intact, freely moving animals.
PMCID:4702503
PMID: 26627311
ISSN: 1097-4199
CID: 2041052
Neurodata Without Borders: Creating a Common Data Format for Neurophysiology
Teeters, Jeffery L; Godfrey, Keith; Young, Rob; Dang, Chinh; Friedsam, Claudia; Wark, Barry; Asari, Hiroki; Peron, Simon; Li, Nuo; Peyrache, Adrien; Denisov, Gennady; Siegle, Joshua H; Olsen, Shawn R; Martin, Christopher; Chun, Miyoung; Tripathy, Shreejoy; Blanche, Timothy J; Harris, Kenneth; Buzsaki, Gyorgy; Koch, Christof; Meister, Markus; Svoboda, Karel; Sommer, Friedrich T
The Neurodata Without Borders (NWB) initiative promotes data standardization in neuroscience to increase research reproducibility and opportunities. In the first NWB pilot project, neurophysiologists and software developers produced a common data format for recordings and metadata of cellular electrophysiology and optical imaging experiments. The format specification, application programming interfaces, and sample datasets have been released.
PMID: 26590340
ISSN: 1097-4199
CID: 1856272
Robert L. Isaacson: Pioneer of limbic system research
Buzsaki, Gyorgy; Spear, Linda
PMID: 26343806
ISSN: 1098-1063
CID: 1839332