Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:chanc12

Total Results:

109


Structural and Functional Brain Remodeling during Pregnancy with Diffusion Tensor MRI and Resting-State Functional MRI

Chan, Russell W; Ho, Leon C; Zhou, Iris Y; Gao, Patrick P; Chan, Kevin C; Wu, Ed X
Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline) and seventeen days after mating (G17). G17 is equivalent to the early stage of the third trimester in humans. Seven age-matched nulliparous female rats served as non-pregnant controls and were scanned at the same time-points. For DTI, diffusivity was found to generally increase in the whole brain during pregnancy, indicating structural changes at microscopic levels that facilitated water molecular movement. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus while fractional anisotropy in the dorsal dentate gyrus increased significantly during pregnancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased significantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus appeared to correlate with the bilateral functional connectivity increase in the hippocampus. These findings revealed tissue structural modifications in the whole brain during pregnancy, and that the hippocampus was structurally and functionally remodeled in a more marked manner.
PMCID:4675543
PMID: 26658306
ISSN: 1932-6203
CID: 2449572

Long-term effects of neonatal hypoxia-ischemia on structural and physiological integrity of the eye and visual pathway by multimodal MRI

Chan, Kevin C; Kancherla, Swarupa; Fan, Shu-Juan; Wu, Ed X
PURPOSE: Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. METHODS: Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. RESULTS: Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. CONCLUSIONS: High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury.
PMCID:4294285
PMID: 25491295
ISSN: 0146-0404
CID: 2449532

Magic angle-enhanced MRI of fibrous microstructures in sclera and cornea with and without intraocular pressure loading

Ho, Leon C; Sigal, Ian A; Jan, Ning-Jiun; Squires, Alexander; Tse, Zion; Wu, Ed X; Kim, Seong-Gi; Schuman, Joel S; Chan, Kevin C
PURPOSE: The structure and biomechanics of the sclera and cornea are central to several eye diseases such as glaucoma and myopia. However, their roles remain unclear, partly because of limited noninvasive techniques to assess their fibrous microstructures globally, longitudinally, and quantitatively. We hypothesized that magic angle-enhanced magnetic resonance imaging (MRI) can reveal the structural details of the corneoscleral shell and their changes upon intraocular pressure (IOP) elevation. METHODS: Seven ovine eyes were extracted and fixed at IOP = 50 mm Hg to mimic ocular hypertension, and another 11 eyes were unpressurized. The sclera and cornea were scanned at different angular orientations relative to the main magnetic field inside a 9.4-Tesla MRI scanner. Relative MRI signal intensities and intrinsic transverse relaxation times (T2 and T2*) were determined to quantify the magic angle effect on the corneoscleral shells. Three loaded and eight unloaded tendon samples were scanned as controls. RESULTS: At magic angle, high-resolution MRI revealed distinct scleral and corneal lamellar fibers, and light/dark bands indicative of collagen fiber crimps in the sclera and tendon. Magic angle enhancement effect was the strongest in tendon and the least strong in cornea. Loaded sclera, cornea, and tendon possessed significantly higher T2 and T2* than unloaded tissues at magic angle. CONCLUSIONS: Magic angle-enhanced MRI can detect ocular fibrous microstructures without contrast agents or coatings and can reveal their MR tissue property changes with IOP loading. This technique may open up new avenues for assessment of the biomechanical and biochemical properties of ocular tissues in aging and in diseases involving the corneoscleral shell.
PMCID:4160095
PMID: 25103267
ISSN: 0146-0404
CID: 1884892

In vivo assessment of aqueous humor dynamics upon chronic ocular hypertension and hypotensive drug treatment using gadolinium-enhanced MRI

Ho, Leon C; Conner, Ian P; Do, Chi-Wai; Kim, Seong-Gi; Wu, Ed X; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C
PURPOSE: Although glaucoma treatments alter aqueous humor (AH) dynamics to lower intraocular pressure, the regulatory mechanisms of AH circulation and their contributions to the pathogenesis of ocular hypertension and glaucoma remain unclear. We hypothesized that gadolinium-enhanced magnetic resonance imaging (Gd-MRI) can visualize and assess AH dynamics upon sustained intraocular pressure elevation and pharmacologic interventions. METHODS: Gadolinium contrast agent was systemically administered to adult rats to mimic soluble AH components entering the anterior chamber (AC) via blood-aqueous barrier. Dynamic Gd-MRI was applied to examine the signal enhancement in AC and vitreous body upon microbead-induced ocular hypertension and unilateral topical applications of latanoprost, timolol maleate, and brimonidine tartrate to healthy eyes. RESULTS: Gadolinium signal time courses in microbead-induced hypertensive eyes possessed faster initial gadolinium uptake and higher peak signals in AC than control eyes, reflective of reduced gadolinium clearance upon microbead occlusion. Opposite trends were observed in latanoprost- and timolol-treated eyes, indicative of their respective drug actions on increased uveoscleral outflow and reduced AH production. The slowest initial gadolinium uptake but strongest peak signals were found in AC of both brimonidine-treated and untreated fellow eyes. These findings drew attention to the systemic effects of topical hypotensive drug treatment. Gadolinium leaked into the vitreous of microbead-induced hypertensive eyes and brimonidine-treated and untreated fellow eyes, suggestive of a compromise of aqueous-vitreous or blood-ocular barrier integrity. CONCLUSIONS: Gadolinium-enhanced MRI allows spatiotemporal and quantitative evaluation of altered AH dynamics and ocular tissue permeability for better understanding the physiological mechanisms of ocular hypertension and the efficacy of antiglaucoma drug treatments.
PMCID:4062398
PMID: 24764067
ISSN: 0146-0404
CID: 1884982

In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI

Chan, Kevin C; Fan, Shu-Juan; Chan, Russell W; Cheng, Joe S; Zhou, Iris Y; Wu, Ed X
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn(2+) injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn(2+) transfer but not intra- or inter-hemispheric monosynaptic Mn(2+) transport after Mn(2+) injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies.
PMCID:3951771
PMID: 24394694
ISSN: 1095-9572
CID: 2449482

Successful tactile based visual sensory substitution use functions independently of visual pathway integrity

Lee, Vincent K; Nau, Amy C; Laymon, Charles; Chan, Kevin C; Rosario, Bedda L; Fisher, Chris
PURPOSE: Neuronal reorganization after blindness is of critical interest because it has implications for the rational prescription of artificial vision devices. The purpose of this study was to distinguish the microstructural differences between perinatally blind (PB), acquired blind (AB), and normally sighted controls (SCs) and relate these differences to performance on functional tasks using a sensory substitution device (BrainPort). METHODS: We enrolled 52 subjects (PB n = 11; AB n = 35; SC n = 6). All subjects spent 15 h undergoing BrainPort device training. Outcomes of light perception, motion, direction, temporal resolution, grating, and acuity were tested at baseline and after training. Twenty-six of the subjects were scanned with a three Tesla MRI scanner for diffusion tensor imaging (DTI), and with a positron emission tomography (PET) scanner for mapping regional brain glucose consumption during sensory substitution function. Non-parametric models were used to analyze fractional anisotropy (FA; a DTI measure of microstructural integrity) of the brain via region-of-interest (ROI) analysis and tract-based spatial statistics (TBSS). RESULTS: At baseline, all subjects performed all tasks at chance level. After training, light perception, time resolution, location and grating acuity tasks improved significantly for all subject groups. ROI and TBSS analyses of FA maps show areas of statistically significant differences (p
PMCID:4026734
PMID: 24860473
ISSN: 1662-5161
CID: 2449992

In vivo chromium-enhanced MRI of the retina

Chan, Kevin C; Fan, Shu-Juan; Zhou, Iris Y; Wu, Ed X
Chromium (Cr) has been used histologically to stabilize lipid fractions in the retina and is suggested to enhance oxidizable lipids in brain MRI. This study explored the feasibility, sensitivity, and specificity of in vivo chromium-enhanced MRI of retinal lipids by determining its spatiotemporal profiles and toxic effect after intravitreal Cr(VI) injection to normal adult rats. One day after 3 muL Cr(VI) administration at 1-100 mM, the retina exhibited a dose-dependent increase in T1-weighted hyperintensity until 50 mM. Time-dependently, significant T1-weighted hyperintensity persisted up to 2 weeks after 10 mM Cr(VI) administration. Three-dimensional chromium-enhanced MRI of ex vivo normal eyes at isotropic 50-mum resolution showed at least five alternating bands across retinal layers, with the outermost layer being the brightest. This agreed with histology indicating alternating lipid contents with the highest level in the photoreceptor layer of the outer retina. Although Cr(VI) reduction may induce oxidative stress and depolymerize microtubules, manganese-enhanced MRI after chromium-enhanced MRI showed a dose-dependent effect of Cr toxicity on manganese uptake and axonal transport along the visual pathway. These results potentiated future longitudinal chromium-enhanced MRI studies on retinal lipid metabolism upon further optimization of Cr doses with visual cell viability.
PMID: 22213133
ISSN: 1522-2594
CID: 2449662

Effect of cerebrovascular changes on brain DTI quantitation: a hypercapnia study

Ding, Abby Y; Chan, Kevin C; Wu, Ed X
Quantitative diffusion tensor imaging (DTI) offers a valuable tool to probe the microstructural changes in neural tissues in vivo, where absolute quantitation accuracy and reproducibility are essential. It has been long recognized that measurement of apparent diffusion coefficient (ADC) using DTI could be influenced by the presence of water molecules in cerebrovasculature. However, little is known about to what extent such blood signal affects DTI quantitation. In this study, we quantitatively examined the effect of cerebral hemodynamic change on DTI indices by using a standard multislice echo planar imaging (EPI) spin echo (SE) DTI acquisition protocol and a rat model of hypercapnia. In response to 5% CO(2) challenge, mean, radial and axial diffusivities measured with diffusion factor (b-value) of b=1.0 ms/mum(2) were found to increase in whole brain (1.52%+/-0.22%, 1.66%+/-0.16% and 1.35%+/-0.37%, respectively), gray matter (1.56%+/-0.23%, 1.63%+/-0.14% and 1.47%+/-0.45%, respectively) and white matter regions (1.45%+/-0.28%, 1.88%+/-0.33% and 1.10%+/-0.26%, respectively). Fractional anisotropy (FA) was found to decrease by 1.67%+/-0.38%, 1.91%+/-0.59% and 1.46%+/-0.30% in whole brain, gray matter and white matter regions, respectively. In addition, these diffusivity increases and FA decreases became more pronounced at a lower b-value (b=0.3 ms/mum(2)). The results indicated that in vivo DTI quantitation in brain can be contaminated by vascular factors on the order of few percentages. Consequently, alterations in cerebrovasculature and hemodynamics can affect the DTI quantitation and its efficacy in characterizing the neural tissue microstructures in normal and diseased states. Caution should be taken in designing and interpreting quantitative DTI studies as all DTI indices can be potentially confounded by physiologic conditions and by cerebrovascular and hemodynamic characteristics.
PMID: 22495243
ISSN: 1873-5894
CID: 2449622

High fidelity tonotopic mapping using swept source functional magnetic resonance imaging

Cheung, Matthew M; Lau, Condon; Zhou, Iris Y; Chan, Kevin C; Zhang, Jevin W; Fan, Shu-Juan; Wu, Ed X
Tonotopy, the topographic encoding of sound frequency, is the fundamental property of the auditory system. Invasive techniques lack the spatial coverage or frequency resolution to rigorously investigate tonotopy. Conventional auditory fMRI is corrupted by significant image distortion, sporadic acoustic noise and inadequate frequency resolution. We developed an efficient and high fidelity auditory fMRI method that integrates continuous frequency sweeping stimulus, distortion free MRI sequence with stable scanner noise and Fourier analysis. We demonstrated this swept source imaging (SSI) in the rat inferior colliculus and obtained tonotopic maps with ~2 kHz resolution and 40 kHz bandwidth. The results were vastly superior to those obtained by conventional fMRI mapping approach and in excellent agreement with invasive findings. We applied SSI to examine tonotopic injury following developmental noise exposure and observed that the tonotopic organization was significantly disrupted. With SSI, we also observed the subtle effects of sound pressure level on tonotopic maps, reflecting the complex neuronal responses associated with asymmetric tuning curves. This in vivo and noninvasive technique will greatly facilitate future investigation of tonotopic plasticity and disorders and auditory information processing. SSI can also be adapted to study topographic organization in other sensory systems such as retinotopy and somatotopy.
PMID: 22445952
ISSN: 1095-9572
CID: 2449632

Balanced steady-state free precession fMRI with intravascular susceptibility contrast agent

Zhou, Iris Y; Cheung, Matthew M; Lau, Condon; Chan, Kevin C; Wu, Ed X
One major challenge in echo planar imaging-based functional MRI (fMRI) is the susceptibility-induced image distortion. In this study, a new cerebral blood volume-weighted fMRI technique using distortion-free balanced steady-state free precession (bSSFP) sequence was proposed and its feasibility was investigated in rat brain at 7 Tesla. After administration of intravascular susceptibility contrast agent (monocrystalline iron oxide nanoparticle [MION] at 15 mg/kg), unilateral visual stimulation was presented using a block-design paradigm. With repetition time/echo time = 3.8/1.9 ms and alpha = 18 degrees , bSSFP fMRI was performed and compared with the conventional cerebral blood volume-weighted fMRI using post-MION gradient echo and spin echo echo planar imaging. The results showed that post-MION bSSFP fMRI provides comparable sensitivity but with no severe image distortion and signal dropout. Robust negative responses were observed during stimulation and activation patterns were in excellent agreement with known neuroanatomy. Furthermore, the post-MION bSSFP signal was observed to decrease significantly during hypercapnia challenge, indicating its sensitivity to cerebral blood volume changes. These findings demonstrated that post-MION bSSFP fMRI is a promising alternative to conventional cerebral blood volume-weighted fMRI. This technique is particularly suited for fMRI investigation of animal models at high field.
PMID: 22127794
ISSN: 1522-2594
CID: 2449682