Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:chaom01

Total Results:

350


Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction

Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V; Will, Nathan E; Irmady, Krithi; Lee, Francis S; Hempstead, Barbara L; Bracken, Clay
A common single-nucleotide polymorphism (SNP) in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This SNP is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism, we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75(NTR) and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand, which modulates neuronal morphology.
PMCID:3820160
PMID: 24048383
ISSN: 2041-1723
CID: 1058742

The entorhinal cortex and neurotrophin signaling in Alzheimer's disease and other disorders

Scharfman, Helen E; Chao, Moses V
A major problem in the field of neurodegeneration is the basis of selective vulnerability of subsets of neurons to disease. In aging, Alzheimer's disease (AD), and other disorders such as temporal lobe epilepsy, the superficial layers of the entorhinal cortex (EC) are an area of selective vulnerability. In AD, it has been suggested that the degeneration of these neurons may play a role in causing the disease because it occurs at an early stage. Therefore, it is important to define the distinctive characteristics of the EC that make this region particularly vulnerable. It has been shown that neurotrophins such as brain-derived neurotrophic factor (BDNF) are critical to the maintenance of the cortical neurons in the adult brain, and specifically the EC. Here we review the circuitry, distinctive functions, and neurotrophin-dependence of the EC that are relevant to its vulnerability. We also suggest that a protein that is critical to the actions of BDNF, the ARMS/Kidins220 scaffold protein, plays an important role in neurotrophic support of the EC.
PMCID:3836904
PMID: 24168199
ISSN: 1758-8928
CID: 652262

A NOVEL GENE THERAPY APPROACH IN GLIOBLASTOMA THAT TARGETS TUMOR STEM CELLS [Meeting Abstract]

Bayin, Nermin S.; Dietrich, August; Abel, Tobias; Chao, Moses V.; Song, Hae-Ri; Buchholz, Christian J.; Placantonakis, Dimitris
ISI:000310971300587
ISSN: 1522-8517
CID: 205002

Reversal of Impaired Hippocampal Long-Term Potentiation and Contextual Fear Memory Deficits in Angelman Syndrome Model Mice by ErbB Inhibitors

Kaphzan, Hanoch; Hernandez, Pepe; Jung, Joo In; Cowansage, Kiriana K; Deinhardt, Katrin; Chao, Moses V; Abel, Ted; Klann, Eric
BACKGROUND: Angelman syndrome (AS) is a human neuropsychiatric disorder associated with autism, mental retardation, motor abnormalities, and epilepsy. In most cases, AS is caused by the deletion of the maternal copy of UBE3A gene, which encodes the enzyme ubiquitin ligase E3A, also termed E6-AP. A mouse model of AS has been generated and these mice exhibit many of the observed neurological alterations in humans. Because of clinical and neuroanatomical similarities between AS and schizophrenia, we examined AS model mice for alterations in the neuregulin-ErbB4 pathway, which has been implicated in the pathophysiology of schizophrenia. We focused our studies on the hippocampus, one of the major brain loci impaired in AS mice. METHODS: We determined the expression of neuregulin 1 and ErbB4 receptors in AS mice and wild-type littermates (ages 10-16 weeks) and studied the effects of ErbB inhibition on long-term potentiation in hippocampal area cornu ammonis 1 and on hippocampus-dependent contextual fear memory. RESULTS: We observed enhanced neuregulin-ErbB4 signaling in the hippocampus of AS model mice and found that ErbB inhibitors could reverse deficits in long-term potentiation, a cellular substrate for learning and memory. In addition, we found that an ErbB inhibitor enhanced long-term contextual fear memory in AS model mice. CONCLUSIONS: Our findings suggest that neuregulin-ErbB4 signaling is involved in synaptic plasticity and memory impairments in AS model mice, suggesting that ErbB inhibitors have therapeutic potential for the treatment of AS.
PMCID:3368039
PMID: 22381732
ISSN: 0006-3223
CID: 174183

Quantitative analysis of BDNF/TrkB protein and mRNA in cortical and striatal neurons using alpha-tubulin as a normalization factor

Ma, Bin; Savas, Jeffrey N; Chao, Moses V; Tanese, Naoko
The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase TrkB serve important regulatory roles for multiple aspects of the biology of neurons including cell death, survival, growth, differentiation, and plasticity. Regulation of the local availability of BDNF/TrkB at distinct subcellular domains such as soma, dendrites, axons, growth cones, nerve terminals, and spines appears to contribute to their specific functions. In view of the variance in size and shape of neurons and their compartments, previous quantitative studies of the BDNF/TrkB protein and mRNA lacked a robust normalization procedure. To overcome this problem, we have established methods that use immunofluorescence detection of alpha-tubulin as a normalization factor for the quantitative analysis of protein and mRNA in primary rat cortical and striatal neurons in culture. The efficacy of this approach is demonstrated by studying the dynamic distribution of proteins and mRNA at different growth stages or conditions. Treatment of cultured neurons with KCl resulted in increased levels of TrkB protein, reduced levels of BDNF mRNA (composite of multiple transcripts) and a slight reduction in BDNF protein levels in the dendrites from the cortex. The KCl treatment also lowered the percentage of BDNF and TrkB proteins in the soma indicative of protein transport. Finally, analysis of the rat cortical and striatal neurons demonstrated comparable or even higher levels of BDNF/TrkB protein and BDNF mRNA in the neurons from the striatum. Thus, in contrast to previous observations made in vivo, striatal neurons are capable of synthesizing BDNF mRNA when cultured in growth media in vitro. The analytical approach presented here provides a detailed understanding of BDNF/TrkB levels in response to a variety of neuronal activities. Our methods could be used broadly, including applications in cell and tissue cytometry, to yield accurate quantitative data of gene expression in cellular and subcellular contexts. (c) 2012 International Society for Advancement of Cytometry.
PMCID:3549458
PMID: 22649026
ISSN: 1552-4922
CID: 173025

Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor

Kobayashi, Mariko; Wilson, Angus C; Chao, Moses V; Mohr, Ian
Latent herpes simplex virus-1 (HSV1) genomes in peripheral nerve ganglia periodically reactivate, initiating a gene expression program required for productive replication. Whether molecular cues detected by axons can be relayed to cell bodies and harnessed to regulate latent genome expression in neuronal nuclei is unknown. Using a neuron culture model, we found that inhibiting mTOR, depleting its regulatory subunit raptor, or inducing hypoxia all trigger reactivation. While persistent mTORC1 activation suppressed reactivation, a mutant 4E-BP (eIF4E-binding protein) translational repressor unresponsive to mTORC1 stimulated reactivation. Finally, inhibiting mTOR in axons induced reactivation. Thus, local changes in axonal mTOR signaling that control translation regulate latent HSV1 genomes in a spatially segregated compartment.
PMCID:3404381
PMID: 22802527
ISSN: 0890-9369
CID: 174034

Ankyrin repeat-rich membrane spanning protein (kidins220) is required for neurotrophin and ephrin receptor-dependent dendrite development

Chen, Yu; Fu, Wing-Yu; Ip, Jacque P K; Ye, Tao; Fu, Amy K Y; Chao, Moses V; Ip, Nancy Y
Dendrites are the primary sites on neurons for receiving and integrating inputs from their presynaptic partners. Defects in dendrite development perturb the formation of neural circuitry and impair information processing in the brain. Extracellular cues are important for shaping the dendritic morphogenesis, but the underlying molecular mechanisms are not well understood. In this study, we examined the role of ARMS (ankyrin repeat-rich membrane spanning protein), also known as Kidins220 (kinase D-interacting substrate of 220 kDa), previously identified as a downstream target of neurotrophin and ephrin receptors, in dendrite development. We report here that knockdown of ARMS/Kidins220 by in utero electroporation impairs dendritic branching in mouse cerebral cortex, and silencing of ARMS/Kidins220 in primary rat hippocampal neurons results in a significant decrease in the length, number, and complexity of the dendritic arbors. Overexpression of cell surface receptor tyrosine kinases, including TrkB and EphB2, in ARMS/Kidins220-deficient neurons can partially rescue the defective dendritic phenotype. More importantly, we show that PI3K (phosphoinositide-3-kinase)- and Akt-mediated signaling pathway is crucial for ARMS/Kidins220-dependent dendrite development. Furthermore, loss of ARMS/Kidins220 significantly reduced the clustering of EphB2 receptor signaling complex in neurons. Our results collectively suggest that ARMS/Kidins220 is a key player in organizing the signaling complex to transduce the extracellular stimuli to cellular responses during dendrite development.
PMID: 22699907
ISSN: 0270-6474
CID: 169487

Introduction to the special issue in honor of Ira B. Black [Editorial]

Chao, Moses V; Dreyfus, Cheryl F
PMID: 22539248
ISSN: 1932-8451
CID: 166828

A primary neuron culture system for the study of herpes simplex virus latency and reactivation

Kobayashi, Mariko; Kim, Ju-Youn; Camarena, Vladimir; Roehm, Pamela C; Chao, Moses V; Wilson, Angus C; Mohr, Ian
Herpes simplex virus type-1 (HSV-1) establishes a life-long latent infection in peripheral neurons. This latent reservoir is the source of recurrent reactivation events that ensure transmission and contribute to clinical disease. Current antivirals do not impact the latent reservoir and there are no vaccines. While the molecular details of lytic replication are well-characterized, mechanisms controlling latency in neurons remain elusive. Our present understanding of latency is derived from in vivo studies using small animal models, which have been indispensable for defining viral gene requirements and the role of immune responses. However, it is impossible to distinguish specific effects on the virus-neuron relationship from more general consequences of infection mediated by immune or non-neuronal support cells in live animals. In addition, animal experimentation is costly, time-consuming, and limited in terms of available options for manipulating host processes. To overcome these limitations, a neuron-only system is desperately needed that reproduces the in vivo characteristics of latency and reactivation but offers the benefits of tissue culture in terms of homogeneity and accessibility. Here we present an in vitro model utilizing cultured primary sympathetic neurons from rat superior cervical ganglia (SCG) (Figure 1) to study HSV-1 latency and reactivation that fits most if not all of the desired criteria. After eliminating non-neuronal cells, near-homogeneous TrkA(+) neuron cultures are infected with HSV-1 in the presence of acyclovir (ACV) to suppress lytic replication. Following ACV removal, non-productive HSV-1 infections that faithfully exhibit accepted hallmarks of latency are efficiently established. Notably, lytic mRNAs, proteins, and infectious virus become undetectable, even in the absence of selection, but latency-associated transcript (LAT) expression persists in neuronal nuclei. Viral genomes are maintained at an average copy number of 25 per neuron and can be induced to productively replicate by interfering with PI3-Kinase / Akt signaling or the simple withdrawal of nerve growth factor(1). A recombinant HSV-1 encoding EGFP fused to the viral lytic protein Us11 provides a functional, real-time marker for replication resulting from reactivation that is readily quantified. In addition to chemical treatments, genetic methodologies such as RNA-interference or gene delivery via lentiviral vectors can be successfully applied to the system permitting mechanistic studies that are very difficult, if not impossible, in animals. In summary, the SCG-based HSV-1 latency / reactivation system provides a powerful, necessary tool to unravel the molecular mechanisms controlling HSV1 latency and reactivation in neurons, a long standing puzzle in virology whose solution may offer fresh insights into developing new therapies that target the latent herpesvirus reservoir.
PMCID:3466666
PMID: 22491318
ISSN: 1940-087x
CID: 164363

BDNF Val66Met Impairs Fluoxetine-Induced Enhancement of Adult Hippocampus Plasticity

Bath, Kevin G; Jing, Deqiang Q; Dincheva, Iva; Neeb, Christine C; Pattwell, Siobhan S; Chao, Moses V; Lee, Francis S; Ninan, Ipe
Recently, a single-nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene (BDNF Val66Met) has been linked to the development of multiple forms of neuropsychiatric illness. This SNP, when genetically introduced into mice, recapitulates core phenotypes identified in human BDNF Val66Met carriers. In mice, this SNP also leads to elevated expression of anxiety-like behaviors that are not rescued with the prototypic selective serotonin reuptake inhibitor (SSRI), fluoxetine. A prominent hypothesis is that SSRI-induced augmentation of BDNF protein expression and the beneficial trophic effects of BDNF on neural plasticity are critical components for drug response. Thus, these mice represent a potential model to study the biological mechanism underlying treatment-resistant forms of affective disorders. To test whether the BDNF Val66Met SNP alters SSRI-induced changes in neural plasticity, we used wild-type (BDNF(Val/Val)) mice, and mice homozygous for the BDNF Val66Met SNP (BDNF(Met/Met)). We assessed hippocampal BDNF protein levels, survival rates of adult born cells, and synaptic plasticity (long-term potentiation, LTP) in the dentate gyrus either with or without chronic (28-day) fluoxetine treatment. BDNF(Met/Met) mice had decreased basal BDNF protein levels in the hippocampus that did not significantly increase following fluoxetine treatment. BDNF(Met/Met) mice had impaired survival of newly born cells and LTP in the dentate gyrus; the LTP effects remained blunted following fluoxetine treatment. The observed effects of the BDNF Val66Met SNP on hippocampal BDNF expression and synaptic plasticity provide a possible mechanistic basis by which this common BDNF SNP may impair efficacy of SSRI drug treatment.
PMCID:3306891
PMID: 22218094
ISSN: 0893-133x
CID: 162952