Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:dingy04

Total Results:

182


Synthesis and PET studies of [(11)C-cyano]letrozole (Femara), an aromatase inhibitor drug

Kil, Kun-Eek; Biegon, Anat; Ding, Yu-Shin; Fischer, Andre; Ferrieri, Richard A; Kim, Sung Won; Pareto, Deborah; Schueller, Michael J; Fowler, Joanna S
INTRODUCTION: Aromatase, a member of the cytochrome P450 family, converts androgens such as androstenedione and testosterone into estrone and estradiol, respectively. Letrozole (1-[bis-(4-cyanophenyl)methyl]-1H-1,2,4-triazole; Femara) is a high-affinity aromatase inhibitor (K(i)=11.5 nM) that has Food and Drug Administration approval for breast cancer treatment. Here we report the synthesis of carbon-11-labeled letrozole and its assessment as a radiotracer for brain aromatase in the baboon. METHODS: Letrozole and its precursor (4-[(4-bromophenyl)-1H-1,2,4-triazol-1-ylmethyl]benzonitrile) were prepared in a two-step synthesis from 4-cyanobenzyl bromide and 4-bromobenzyl bromide, respectively. The [(11)C]cyano group was introduced via tetrakis(triphenylphosphine)palladium(0)-catalyzed coupling of [(11)C]cyanide with the bromo precursor. Positron emission tomography (PET) studies in the baboon brain were carried out to assess regional distribution and kinetics, reproducibility of repeated measures and saturability. Log D, the free fraction of letrozole in plasma and the [(11)C-cyano]letrozole fraction in arterial plasma were also measured. RESULTS: [(11)C-cyano]Letrozole was synthesized in 60 min with a radiochemical yield of 79-80%, with a radiochemical purity greater than 98% and a specific activity of 4.16+/-2.21 Ci/mumol at the end of bombardment (n=4). PET studies in the baboon revealed initial rapid and high uptake and initial rapid clearance, followed by slow clearance of carbon-11 from the brain, with no difference between brain regions. Brain kinetics was not affected by coinjection of unlabeled letrozole (0.1 mg/kg). The free fraction of letrozole in plasma was 48.9%, and log D was 1.84. CONCLUSION: [(11)C-cyano]Letrozole is readily synthesized via a palladium-catalyzed coupling reaction with [(11)C]cyanide. Although it is unsuitable as a PET radiotracer for brain aromatase, as revealed by the absence of regional specificity and saturability in brain regions such as amygdala, which are known to contain aromatase, it may be useful in measuring letrozole distribution and pharmacokinetics in the brain and peripheral organs
PMCID:3161428
PMID: 19217534
ISSN: 0969-8051
CID: 149019

Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors

Volkow, Nora D; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S; Thanos, Panayotis K; Logan, Jean; Alexoff, David; Ding, Yu-Shin; Wong, Christopher; Ma, Yeming; Pradhan, Kith
Dopamine's role in inhibitory control is well recognized and its disruption may contribute to behavioral disorders of discontrol such as obesity. However, the mechanism by which impaired dopamine neurotransmission interferes with inhibitory control is poorly understood. We had previously documented a reduction in dopamine D2 receptors in morbidly obese subjects. To assess if the reductions in dopamine D2 receptors were associated with activity in prefrontal brain regions implicated in inhibitory control we assessed the relationship between dopamine D2 receptor availability in striatum with brain glucose metabolism (marker of brain function) in ten morbidly obese subjects (BMI>40 kg/m(2)) and compared it to that in twelve non-obese controls. PET was used with [(11)C]raclopride to assess D2 receptors and with [(18)F]FDG to assess regional brain glucose metabolism. In obese subjects striatal D2 receptor availability was lower than controls and was positively correlated with metabolism in dorsolateral prefrontal, medial orbitofrontal, anterior cingulate gyrus and somatosensory cortices. In controls correlations with prefrontal metabolism were not significant but comparisons with those in obese subjects were not significant, which does not permit to ascribe the associations as unique to obesity. The associations between striatal D2 receptors and prefrontal metabolism in obese subjects suggest that decreases in striatal D2 receptors could contribute to overeating via their modulation of striatal prefrontal pathways, which participate in inhibitory control and salience attribution. The association between striatal D2 receptors and metabolism in somatosensory cortices (regions that process palatability) could underlie one of the mechanisms through which dopamine regulates the reinforcing properties of food
PMCID:2659013
PMID: 18598772
ISSN: 1095-9572
CID: 144511

Comparison of the pharmacokinetics of different analogs of 11C-labeled TZTP for imaging muscarinic M2 receptors with PET

Reid, Alicia E; Ding, Yu-Shin; Eckelman, William C; Logan, Jean; Alexoff, David; Shea, Colleen; Xu, Youwen; Fowler, Joanna S
INTRODUCTION: The only radiotracer available for the selective imaging of muscarinic M2 receptors in vivo is 3-(3-(3-[18F]fluoropropyl)thio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro- 1-methylpyridine) ([18F]FP-TZTP). We have prepared and labeled 3-(3-(3-fluoropropylthio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-meth ylpyridne (FP-TZTP, 3) and two other TZTP derivatives with 11C at the methylpyridine moiety to explore the potential of using 11C-labeled FP-TZTP for positron emission tomography imaging of M2 receptors and to compare the effect of small structural changes on tracer pharmacokinetics (PK) in brain and peripheral organs. METHODS: 11C-radiolabeled FP-TZTP, 3-(3-propylthio)-TZTP (6) and 3,3,3-(3-(3-trifluoropropyl)-TZTP (10) were prepared, and log D, plasma protein binding (PPB), affinity constants, time-activity curves (TACs), area under the curve (AUC) for arterial plasma, distribution volumes (DV) and pharmacological blockade in baboons were compared. RESULTS: Values for log D, PPB and affinity constants were similar for 3, 6 and 10. The fraction of parent radiotracer in the plasma was higher and the AUC lower for 10 than for 3 and 6. TACs for brain regions were similar for 3 and 6, which showed PK similar to the 18F tracer, while 10 showed slower uptake and little clearance over 90 min. DVs for 3 and 6 were similar to the 18F tracer but higher for 10. Uptake of the three tracers was significantly reduced by coinjection of unlabeled 3 and 6. CONCLUSION: Small structural variations on the TZTP structure greatly altered the PK in brain and behavior in blood with little change in the log D, PPB or affinity. The study suggests that 11C-radiolabeled 3 will be a suitable alternative to [18F]FP-TZTP for translational studies in humans
PMCID:3161448
PMID: 18355684
ISSN: 0969-8051
CID: 149020

Imaging the norepinephrine transporter in humans with (S,S)-[11C]O-methyl reboxetine and PET: problems and progress

Logan, Jean; Wang, Gene-jack; Telang, Frank; Fowler, Joanna S; Alexoff, David; Zabroski, John; Jayne, Millard; Hubbard, Barbara; King, Payton; Carter, Pauline; Shea, Colleen; Xu, Youwen; Muench, Lisa; Schlyer, David; Learned-Coughlin, Susan; Cosson, Valerie; Volkow, Nora D; Ding, Yu-Shin
Results from human studies with the PET radiotracer (S,S)-[(11)C]O-methyl reboxetine ([(11)C](S,S)-MRB), a ligand targeting the norepinephrine transporter (NET), are reported. Quantification methods were determined from test/retest studies, and sensitivity to pharmacological blockade was tested with different doses of atomoxetine (ATX), a drug that binds to the NET with high affinity (K(i)=2-5 nM). METHODS: Twenty-four male subjects were divided into different groups for serial 90-min PET studies with [(11)C](S,S)-MRB to assess reproducibility and the effect of blocking with different doses of ATX (25, 50 and 100 mg, po). Region-of-interest uptake data and arterial plasma input were analyzed for the distribution volume (DV). Images were normalized to a template, and average parametric images for each group were formed. RESULTS: [(11)C](S,S)-MRB uptake was highest in the thalamus (THL) and the midbrain (MBR) [containing the locus coeruleus (LC)] and lowest for the caudate nucleus (CDT). The CDT, a region with low NET, showed the smallest change on ATX treatment and was used as a reference region for the DV ratio (DVR). The baseline average DVR was 1.48 for both the THL and MBR with lower values for other regions [cerebellum (CB), 1.09; cingulate gyrus (CNG) 1.07]. However, more accurate information about relative densities came from the blocking studies. MBR exhibited greater blocking than THL, indicating a transporter density approximately 40% greater than THL. No relationship was found between DVR change and plasma ATX level. Although the higher dose tended to induce a greater decrease than the lower dose for MBR (average decrease for 25 mg=24+/-7%; 100 mg=31+/-11%), these differences were not significant. The different blocking between MBR (average decrease=28+/-10%) and THL (average decrease=17+/-10%) given the same baseline DVR indicates that the CDT is not a good measure for non-NET binding in both regions. Threshold analysis of the difference between the average baseline DV image and the average blocked image showed the expected NET distribution with the MBR (LC) and hypothalamus>THL>CNG and CB, as well as a significant change in the supplementary motor area. DVR reproducibility for the different brain regions was approximately 10%, but intersubject variability was large. CONCLUSIONS: The highest density of NETs was found in the MBR where the LC is located, followed by THL, whereas the lowest density was found in basal ganglia (lowest in CDT), consistent with the regional localization of NETs in the nonhuman primate brain. While all three doses of ATX were found to block most regions, no significant differences between doses were found for any region, although the average percent change across subjects of the MBR did correlate with ATX dose. The lack of a dose effect could reflect a low signal-to-noise ratio coupled with the possibility that a sufficient number of transporters were blocked at the lowest dose and further differences could not be detected. However, since the lowest (25 mg) dose is less than the therapeutic doses used in children for the treatment of attention-deficit/hyperactivity disorder ( approximately 1.0 mg/kg/day), this would suggest that there may be additional targets for ATX's therapeutic actions
PMID: 17707807
ISSN: 0969-8051
CID: 144542

Synthesis and positron emission tomography studies of C-11-labeled isotopomers and metabolites of GTS-21, a partial alpha7 nicotinic cholinergic agonist drug

Kim, Sung Won; Ding, Yu-Shin; Alexoff, David; Patel, Vinal; Logan, Jean; Lin, Kuo-Shyan; Shea, Colleen; Muench, Lisa; Xu, Youwen; Carter, Pauline; King, Payton; Constanzo, Jasmine R; Ciaccio, James A; Fowler, Joanna S
INTRODUCTION: (3E)-3-[(2,4-dimethoxyphenyl)methylene]-3,4,5,6-tetrahydro-2,3'-bipyridine (GTS-21), a partial alpha7 nicotinic acetylcholine receptor agonist drug, has recently been shown to improve cognition in schizophrenia and Alzheimer's disease. One of its two major demethylated metabolites, 4-OH-GTS-21, has been suggested to contribute to its therapeutic effects. METHODS: We labeled GTS-21 in two different positions with carbon-11 ([2-methoxy-(11)C]GTS-21 and [4-(11)C]GTS-21) along with two corresponding demethylated metabolites ([2-methoxy-(11)C]4-OH-GTS-21 and [4-methoxy-(11)C]2-OH-GTS-21) for pharmacokinetic studies in baboons and mice with positron emission tomography (PET). RESULTS: Both [2-(11)C]GTS-21 and [4-methoxy-(11)C]GTS-21 showed similar initial high rapid uptake in baboon brain, peaking from 1 to 3.5 min (0.027-0.038%ID/cc) followed by rapid clearance (t(1/2)<15 min), resulting in low brain retention by 30 min. However, after 30 min, [2-methoxy-(11)C]GTS-21 continued to clear while [4-methoxy-(11)C]GTS-21 plateaued, suggesting the entry of a labeled metabolite into the brain. Comparison of the pharmacokinetics of the two labeled metabolites confirmed expected higher brain uptake and retention of [4-methoxy-(11)C]2-OH-GTS-21 (the labeled metabolite of [4-methoxy-(11)C]GTS-21) relative to [2-methoxy-(11)C]4-OH-GTS-21 (the labeled metabolite of [2-methoxy-(11)C]GTS-21), which had negligible brain uptake. Ex vivo studies in mice showed that GTS-21 is the major chemical form in the mouse brain. Whole-body dynamic PET imaging in baboon and mouse showed that the major route of excretion of C-11 is through the gallbladder. CONCLUSIONS: The major findings are as follows: (a) extremely rapid uptake and clearance of [2-methoxy-(11)C]GTS-21 from the brain, which may need to be considered in developing optimal dosing of GTS-21 for patients, and (b) significant brain uptake of 2-OH-GTS-21, suggesting that it might contribute to the therapeutic effects of GTS-21. This study illustrates the value of comparing different label positions and labeled metabolites to gain insight on the behavior of a central nervous system drug and its metabolites in the brain, providing an important perspective on drug pharmacokinetics
PMCID:3182824
PMID: 17591554
ISSN: 0969-8051
CID: 149021

Synthesis and positron emission tomography studies of carbon-11-labeled imatinib (Gleevec)

Kil, Kun-Eek; Ding, Yu-Shin; Lin, Kuo-Shyan; Alexoff, David; Kim, Sung Won; Shea, Colleen; Xu, Youwen; Muench, Lisa; Fowler, Joanna S
INTRODUCTION: Imatinib mesylate (Gleevec) is a well known drug for treating chronic myeloid leukemia and gastrointestinal stromal tumors. Its active ingredient, imatinib ([4-[(4-methyl-1-piperazinyl)methyl]-N-[4-methyl-3-[[4-(3-pyridyl)-2-pyrim idinyl]amino]phenyl]benzamide), blocks the activity of several tyrosine kinases. Here we labeled imatinib with carbon-11 as a tool for determining the drug distribution and pharmacokinetics of imatinib, and we carried out positron emission tomography (PET) studies in baboons. METHODS: [N-(11)C-methyl]imatinib was synthesized from [(11)C]methyl iodide and norimatinib was synthesized by the demethylation of imatinib (isolated from Gleevec tablets) according to a patent procedure [Collins JM, Klecker RW Jr, Anderson LW. Imaging of drug accumulation as a guide to antitumor therapy. US Patent 20030198594A1, 2003]. Norimatinib was also synthesized from the corresponding amine and acid. PET studies were carried out in three baboons to measure pharmacokinetics in the brain and peripheral organs and to determine the effect of a therapeutic dose of imatinib. Log D and plasma protein binding were also measured. RESULTS: [N-(11)C-methyl]imatinib uptake in the brain is negligible (consistent with P-glycoprotein-mediated efflux); it peaks and clears rapidly from the heart, lungs and spleen. Peak uptake and clearance occur more slowly in the liver and kidneys, followed by accumulation in the gallbladder and urinary bladder. Pretreatment with imatinib did not change uptake in the heart, lungs, kidneys and spleen, and increased uptake in the liver and gallbladder. CONCLUSIONS: [N-(11)C-methyl]imatinib has potential for assessing the regional distribution and kinetics of imatinib in the human body to determine whether the drug targets tumors and to identify other organs to which the drug or its labeled metabolites distribute. Paired with tracers such as 2'deoxy-2'-[(18)F]fluoro-D-glucose ((18)FDG) and 3'deoxy-3'-[(18)F]fluorothymidine ((18)FLT), [N-(11)C-methyl]imatinib may be a useful radiotracer for planning chemotherapy, for monitoring response to treatment and for assessing the role of drug pharmacokinetics in drug resistance
PMCID:2866181
PMID: 17307123
ISSN: 0969-8051
CID: 149022

A novel nicotinic acetylcholine receptor antagonist radioligand for PET studies

Ding, Yu-Shin; Kil, Kun-eek; Lin, Kuo-Shyan; Ma, Wei; Yokota, Yasuno; Carroll, Ivy F
Using positron emission tomography (PET) with a specific and selective radioligand targeting nicotinic acetylcholine receptor (nAChR) would allow us to better understand various nAChR related CNS disorders. The use of radiolabeled nAChR antagonists would provide a much safer pharmacological profile, avoiding most peripheral side effects that might be generated from radiolabeled nAChR agonists even at the tracer level; thus, PET imaging with nAChR antagonists would facilitate clinical application. A potent and selective nAChR antagonist was labeled and characterized with PET in non-human primates. Its high brain uptake, high signal-to-noise ratio, and high specific binding strongly suggest a great potential to carry out imaging studies in humans. In addition, the use of a C-11 radiotracer would allow us to perform multiple PET studies in the same individual within a short time frame. The presence of an iodine atom in the molecule also allows the possibility to label with radioiodine for SPECT studies
PMID: 16289815
ISSN: 0960-894x
CID: 149023

NAD+-linked 15-hydroxyprostaglandin dehydrogenase: structure and biological functions

Tai, H-H; Cho, H; Tong, M; Ding, Y
NAD(+)-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of 15(S)-hydroxyl group of prostaglandins and lipoxins resulting in the formation of 15-keto metabolites which exhibit greatly reduced biological activities. Therefore, this enzyme has been considered the key enzyme responsible for the inactivation of prostaglandins and lipoxins. Both the cDNA and the genomic DNA of the 15-PGDH gene have been cloned. Structural characterization, transcriptional regulation and biological functions of this enzyme have been investigated. Molecular modeling corroborated with site-directed mutagenesis has identified key residues and domains involved in coenzyme and substrate binding. Catalytic mechanism has been proposed. Studies on the regulation of enzyme expression and activity by physiological and pharmacological agents have begun to uncover its significant roles in cancer, inflammation and reproduction. Apparently, 15-PGDH works with cyclooxygenase-2 to control the cellular levels of prostaglandins. Their reciprocal regulation within the same cells appears to determine the fate of the cells. Because of its ability to inactivate both prostaglandins and lipoxins of two opposite biological activities, the roles of 15-PGDH in cancer and inflammation are particularly intriguing and challenging. Future investigations in these areas are warranted.
PMID: 16533162
ISSN: 1381-6128
CID: 172755

PET imaging of norepinephrine transporters

Ding, Yu-Shin; Lin, Kuo-Shyan; Logan, Jean
The involvement of the norepinephrine transporter (NET) in the pathophysiology and treatment of attention deficit hyperactivity disorder (ADHD), substance abuse, neurodegenerative disorders (e.g., Alzheimer's disease (AD) and Parkinson's disease (PD)) and depression has long been recognized. However, many of these important findings have resulted from studies in vitro using postmortem tissues; as of now, these results have never been verified via in vivo methods because brain imaging of NET in living systems has been hampered due to the lack of suitable radioligands. The fact that all three monoamine (dopamine, norepinephrine, and serotonin) transporters (DAT, NET and SERT) are involved in various neurological and psychiatric diseases further emphasizes the need to develop suitable NET ligands so that researchers will be able to probe the contributions of each monoamine transporter system to specific CNS disorders. In this review article, the design and biological evaluation of several radioligands for imaging the brain NET system with PET are discussed. Based on these characterization studies, including C-11 labeled desipramine (DMI), 2-hydroxydesipramine (HDMI), talopram, talsupram, nisoxetine (Nis), oxaprotiline (Oxap), lortalamine (Lort) and C-11 and F-18 derivatives of reboxetine (RB), methylreboxetine (MRB) and their individual (R, R) and (S, S) enantiomers, in conjunction with studies with radiolabeled 4-iodo-tomoxetine and 2-iodo-nisoxetine, we have identified the superiority of (S, S)-[(11)C]MRB and the suitability of the MRB analogs as potential NET ligands for PET. In contrast, Nis, Oxap and Lort displayed high uptake in striatum (higher than thalamus). The use of these ligands is further limited by high non-specific binding and relatively low specific signal, as is characteristic of many earlier NET ligands. Thus, to our knowledge, (S, S)-[(11)C]MRB remains by far the most promising NET ligand for PET studies
PMID: 17073682
ISSN: 1873-4286
CID: 149024

New-generation radiotracers for nAChR and NET

Ding, Yu-Shin; Fowler, Joanna
Advances in radiotracer chemistry and instrumentation have merged to make positron emission tomography (PET) a powerful tool in the biomedical sciences. Positron emission tomography has found increased application in the study of drugs affecting the brain and whole body, including the measurement of drug pharmacokinetics (using a positron-emitter-labeled drug) and drug pharmacodynamics (using a labeled tracer). Thus, radiotracers are major scientific tools enabling investigations of molecular phenomena, which are at the heart of understanding human disease and developing effective treatments; however, there is evidently a bottleneck in translating basic research to clinical practice. In the meantime, the poor ability to predict the in vivo behavior of chemical compounds based on their log P's and affinities emphasizes the need for more knowledge in this area. In this article, we focus on the development and translation of radiotracers for PET studies of the nicotinic acetylcholine receptor (nAChR) and the norepinephrine transporter (NET), two molecular systems that urgently need such an important tool to better understand their functional significance in the living human brain
PMID: 16243646
ISSN: 0969-8051
CID: 149025