Searched for: in-biosketch:yes
person:dynlab01
Cep97 and CP110 Suppress a Cilia Assembly Program
Spektor, Alexander; Tsang, William Y; Khoo, David; Dynlacht, Brian David
Mammalian centrioles play a dynamic role in centrosome function, but they also have the capacity to nucleate the assembly of cilia. Although controls must exist to specify these different fates, the key regulators remain largely undefined. We have purified complexes associated with CP110, a protein that plays an essential role in centrosome duplication and cytokinesis, and have identified a previously uncharacterized protein, Cep97, that recruits CP110 to centrosomes. Depletion of Cep97 or expression of dominant-negative mutants results in CP110 disappearance from centrosomes, spindle defects, and polyploidy. Remarkably, loss of Cep97 or CP110 promotes primary cilia formation in growing cells, and enforced expression of CP110 in quiescent cells suppresses their ability to assemble cilia, suggesting that Cep97 and CP110 collaborate to inhibit a ciliogenesis program. Identification of Cep97 and other genes involved in regulation of cilia assembly may accelerate our understanding of human ciliary diseases, including renal disease and retinal degeneration
PMID: 17719545
ISSN: 0092-8674
CID: 73828
SCAPER, a novel cyclin A interacting protein that regulates cell cycle progression
Tsang, William Y; Wang, Leyu; Chen, Zhihong; Sanchez, Irma; Dynlacht, Brian David
Cyclin A/Cdk2 plays an important role during S and G2/M phases of the eukaryotic cell cycle, but the mechanisms by which it regulates cell cycle events are not fully understood. We have biochemically purified and identified SCAPER, a novel protein that specifically interacts with cyclin A/Cdk2 in vivo. Its expression is cell cycle independent, and it associates with cyclin A/Cdk2 at multiple phases of the cell cycle. SCAPER localizes primarily to the endoplasmic reticulum. Ectopic expression of SCAPER sequesters cyclin A from the nucleus and results specifically in an accumulation of cells in M phase of the cell cycle. RNAi-mediated depletion of SCAPER decreases the cytoplasmic pool of cyclin A and delays the G1/S phase transition upon cell cycle re-entry from quiescence. We propose that SCAPER represents a novel cyclin A/Cdk2 regulatory protein that transiently maintains this kinase in the cytoplasm. SCAPER could play a role in distinguishing S phase- from M phase-specific functions of cyclin A/Cdk2
PMCID:2064469
PMID: 17698606
ISSN: 0021-9525
CID: 73586
XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks
Acosta-Alvear, Diego; Zhou, Yiming; Blais, Alexandre; Tsikitis, Mary; Lents, Nathan H; Arias, Carolina; Lennon, Christen J; Kluger, Yuval; Dynlacht, Brian David
Using genome-wide approaches, we have elucidated the regulatory circuitry governed by the XBP1 transcription factor, a key effector of the mammalian unfolded protein response (UPR), in skeletal muscle and secretory cells. We identified a core group of genes involved in constitutive maintenance of ER function in all cell types and tissue- and condition-specific targets. In addition, we identified a cadre of unexpected targets that link XBP1 to neurodegenerative and myodegenerative diseases, as well as to DNA damage and repair pathways. Remarkably, we found that XBP1 regulates functionally distinct targets through different sequence motifs. Further, we identified Mist1, a critical regulator of differentiation, as an important target of XBP1, providing an explanation for developmental defects associated with XBP1 loss of function. Our results provide a detailed picture of the regulatory roadmap governed by XBP1 in distinct cell types as well as insight into unexplored functions of XBP1
PMID: 17612490
ISSN: 1097-2765
CID: 73301
Functional genomics via multiscale analysis: application to gene expression and ChIP-on-chip data
Lerman, Gilad; McQuown, Joseph; Blais, Alexandre; Dynlacht, Brian D; Chen, Guangliang; Mishra, Bud
We present a fast, versatile and adaptive-multiscale algorithm for analyzing a wide-variety of DNA microarray data. Its primary application is in normalization of array data as well as subsequent identification of 'enriched targets', e.g. differentially expressed genes in expression profiling arrays and enriched sites in ChIP-on-chip experimental data. We show how to accommodate the unique characteristics of ChIP-on-chip data, where the set of 'enriched targets' is large, asymmetric and whose proportion to the whole data varies locally. SUPPLEMENTARY INFORMATION: Supplementary figures, related preprint, free software as well as our raw DNA microarray data with PCR validations are available at http://www.math.umn.edu/~lerman/supp/bioinfo06 as well as Bioinformatics online
PMID: 17164284
ISSN: 1367-4803
CID: 71651
CP110 Cooperates with Two Calcium-binding Proteins to Regulate Cytokinesis and Genome Stability
Tsang, William Y; Spektor, Alexander; Luciano, Daniel J; Indjeian, Vahan B; Chen, Zhihong; Salisbury, Jeffery L; Sanchez, Irma; Dynlacht, Brian David
The centrosome is an integral component of the eukaryotic cell cycle machinery, yet very few centrosomal proteins have been fully characterized to date. We have undertaken a series of biochemical and RNA interference (RNAi) studies to elucidate a role for CP110 in the centrosome cycle. Using a combination of yeast two-hybrid screens and biochemical analyses, we report that CP110 interacts with two different Ca(2+)-binding proteins, calmodulin (CaM) and centrin, in vivo. In vitro binding experiments reveal a direct, robust interaction between CP110 and CaM and the existence of multiple high-affinity CaM-binding domains in CP110. Native CP110 exists in large ( approximately 300 kDa to 3 MDa) complexes that contain both centrin and CaM. We investigated a role for CP110 in CaM-mediated events using RNAi and show that its depletion leads to a failure at a late stage of cytokinesis and the formation of binucleate cells, mirroring the defects resulting from ablation of either CaM or centrin function. Importantly, expression of a CP110 mutant unable to bind CaM also promotes cytokinesis failure and binucleate cell formation. Taken together, our data demonstrate a functional role for CaM binding to CP110 and suggest that CP110 cooperates with CaM and centrin to regulate progression through cytokinesis
PMCID:1525247
PMID: 16760425
ISSN: 1059-1524
CID: 66471
Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells
Balciunaite, Egle; Spektor, Alexander; Lents, Nathan H; Cam, Hugh; Te Riele, Hein; Scime, Anthony; Rudnicki, Michael A; Young, Richard; Dynlacht, Brian David
Biochemical and genetic studies have determined that retinoblastoma protein (pRB) tumor suppressor family members have overlapping functions. However, these studies have largely failed to distinguish functional differences between the highly related p107 and p130 proteins. Moreover, most studies pertaining to the pRB family and its principal target, the E2F transcription factor, have focused on cells that have reinitiated a cell cycle from quiescence, although recent studies suggest that cycling cells exhibit layers of regulation distinct from mitogenically stimulated cells. Using genome-wide chromatin immunoprecipitation, we show that there are distinct classes of genes directly regulated by unique combinations of E2F4, p107, and p130, including a group of genes specifically regulated in cycling cells. These groups exhibit both distinct histone acetylation signatures and patterns of mammalian Sin3B corepressor recruitment. Our findings suggest that cell cycle-dependent repression results from recruitment of an unexpected array of diverse complexes and reveals specific differences between transcriptional regulation in cycling and quiescent cells. In addition, factor location analyses have, for the first time, allowed the identification of novel and specific targets of the highly related transcriptional regulators p107 and p130, suggesting new and distinct regulatory networks engaged by each protein in continuously cycling cells
PMCID:1234327
PMID: 16135806
ISSN: 0270-7306
CID: 58713
Constructing transcriptional regulatory networks
Blais, Alexandre; Dynlacht, Brian David
Biological networks are the representation of multiple interactions within a cell, a global view intended to help understand how relationships between molecules dictate cellular behavior. Recent advances in molecular and computational biology have made possible the study of intricate transcriptional regulatory networks that describe gene expression as a function of regulatory inputs specified by interactions between proteins and DNA. Here we review the properties of transcriptional regulatory networks and the rapidly evolving approaches that will enable the elucidation of their structure and dynamic behavior. Several recent studies illustrate how complementary approaches combine chromatin immunoprecipitation (ChIP)-on-chip, gene expression profiling, and computational methods to construct blueprints for the initiation and maintenance of complex cellular processes, including cell cycle progression, growth arrest, and differentiation. These approaches should allow us to elucidate complete transcriptional regulatory codes for yeast as well as mammalian cells
PMID: 15998805
ISSN: 0890-9369
CID: 58064
E2F4 loss suppresses tumorigenesis in Rb mutant mice
Lee, Eunice Y; Cam, Hieu; Ziebold, Ulrike; Rayman, Joseph B; Lees, Jacqueline A; Dynlacht, Brian David
The E2F transcription factors mediate the activation or repression of key cell cycle regulatory genes under the control of the retinoblastoma protein (pRB) tumor suppressor and its relatives, p107 and p130. Here we investigate how E2F4, the major 'repressive' E2F, contributes to pRB's tumor-suppressive properties. Remarkably, E2F4 loss suppresses the development of both pituitary and thyroid tumors in Rb(+/-) mice. Importantly, E2F4 loss also suppresses the inappropriate gene expression and proliferation of pRB-deficient cells. Biochemical analyses suggest that this tumor suppression occurs via a novel mechanism: E2F4 loss allows p107 and p130 to regulate the pRB-specific, activator E2Fs. We also detect these novel E2F complexes in pRB-deficient cells, suggesting that they play a significant role in the regulation of tumorigenesis in vivo
PMID: 12498715
ISSN: 1535-6108
CID: 33139
CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells
Chen, Zhihong; Indjeian, Vahan B; McManus, Michael; Wang, Leyu; Dynlacht, Brian David
Centrosome duplication and separation are linked inextricably to certain cell cycle events, in particular activation of cyclin-dependent kinases (CDKs). However, relatively few CDK targets driving these events have been uncovered. Here, we have performed a screen for CDK substrates and have isolated a target, CP110, which is phosphorylated by CDKs in vitro and in vivo. Human CP110 localizes to centrosomes. Its expression is strongly induced at the G1-to-S phase transition, coincident with the initiation of centrosome duplication. RNAi-mediated depletion of CP110 indicates that this protein plays an essential role in centrosome duplication. Long-term disruption of CP110 phosphorylation leads to unscheduled centrosome separation and overt polyploidy. Our data suggest that CP110 is a physiological centrosomal CDK target that promotes centrosome duplication, and its deregulation may contribute to genomic instability
PMID: 12361598
ISSN: 1534-5807
CID: 33140
E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex
Rayman, Joseph B; Takahashi, Yasuhiko; Indjeian, Vahan B; Dannenberg, Jan-Hermen; Catchpole, Steven; Watson, Roger J; te Riele, Hein; Dynlacht, Brian David
Despite biochemical and genetic data suggesting that E2F and pRB (pocket protein) families regulate transcription via chromatin-modifying factors, the precise mechanisms underlying gene regulation by these protein families have not yet been defined in a physiological setting. In this study, we have investigated promoter occupancy in wild-type and pocket protein-deficient primary cells. We show that corepressor complexes consisting of histone deacetylase (HDAC1) and mSin3B were specifically recruited to endogenous E2F-regulated promoters in quiescent cells. These complexes dissociated from promoters once cells reached late G1, coincident with gene activation. Interestingly, recruitment of HDAC1 complexes to promoters depended absolutely on p107 and p130, and required an intact E2F-binding site. In contrast, mSin3B recruitment to certain promoters did not require p107 or p130, suggesting that recruitment of this corepressor can occur via E2F-dependent and -independent mechanisms. Remarkably, loss of pRB had no effect on HDAC1 or mSin3B recruitment. p107/p130 deficiency triggered a dramatic loss of E2F4 nuclear localization as well as transcriptional derepression, which is suggested by nucleosome mapping studies to be the result of localized hyperacetylation of nucleosomes proximal to E2F-binding sites. Taken together, these findings show that p130 escorts E2F4 into the nucleus and, together with corepressor complexes that contain mSin3B and/or HDAC1, directly represses transcription from target genes as cells withdraw from the cell cycle
PMCID:152357
PMID: 11959842
ISSN: 0890-9369
CID: 33141