Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:gey01

Total Results:

141


Concurrent saturation transfer contrast in in vivo brain by a uniform magnetization transfer MRI

Lee, Jae-Seung; Xia, Ding; Ge, Yulin; Jerschow, Alexej; Regatte, Ravinder R
The development of chemical exchange saturation transfer (CEST) and magnetization transfer (MT) contrast in MRI has enabled the enhanced detection of metabolites and biomarkers in vivo. In brain MRI, the separation between CEST and MT contrast has been particularly difficult due to overlaps in the frequency responses of the contrast mechanisms. We demonstrate here that MT and CEST contrast can be separated in the brain by the so-called uniform-MT (uMT) technique, thus opening the door to addressing long-standing ambiguities in this field. These methods could be useful for keeping track of important endogenous metabolites and for providing an improved understanding of neurological and neurodegenerative disorders. Examples are shown from white and gray matter regions in healthy volunteers and patients with multiple sclerosis, which demonstrated that the MT effects in the brain were asymmetric and that the uMT method could make them uniform.
PMCID:4059035
PMID: 24662575
ISSN: 1053-8119
CID: 1032292

Characterization of thalamo-cortical association using amplitude and connectivity of functional MRI in mild traumatic brain injury

Zhou, Yongxia; Lui, Yvonne W; Zuo, Xi-Nian; Milham, Michael P; Reaume, Joseph; Grossman, Robert I; Ge, Yulin
PURPOSE: To examine thalamic and cortical injuries using fractional amplitude of low-frequency fluctuations (fALFFs) and functional connectivity MRI (fcMRI) based on resting state (RS) and task-related fMRI in patients with mild traumatic brain injury (MTBI). MATERIALS AND METHODS: Twenty-seven patients and 27 age-matched controls were recruited. The 3 Tesla fMRI at RS and finger tapping task were used to assess fALFF and fcMRI patterns. fALFFs were computed with filtering (0.01-0.08 Hz) and scaling after preprocessing. fcMRI was performed using a standard seed-based correlation method, and delayed fcMRI (coherence) in frequency domain were also performed between thalamus and cortex. RESULTS: In comparison with controls, MTBI patients exhibited significantly decreased fALFFs in the thalamus (and frontal/temporal subsegments) and cortical frontal and temporal lobes; as well as decreased thalamo-thalamo and thalamo-frontal/ thalamo-temporal fcMRI at rest based on RS-fMRI (corrected P < 0.05). This thalamic and cortical disruption also existed at task-related condition in patients. CONCLUSION: The decreased fALFFs (i.e., lower neuronal activity) in the thalamus and its segments provide additional evidence of thalamic injury in patients with MTBI. Our findings of fALFFs and fcMRI changes during motor task and resting state may offer insights into the underlying cause and primary location of disrupted thalamo-cortical networks after MTBI. J. Magn. Reson. Imaging 2013. (c) 2013 Wiley Periodicals, Inc.
PMCID:3872273
PMID: 24014176
ISSN: 1053-1807
CID: 723502

Imaging the effects of oxygen saturation changes in voluntary apnea and hyperventilation on susceptibility-weighted imaging

Chang, K; Barnes, S; Haacke, E M; Grossman, R I; Ge, Y
BACKGROUND AND PURPOSE: Cerebrovascular oxygenation changes during respiratory challenges have clinically important implications for brain function, including cerebral autoregulation and the rate of brain metabolism. SWI is sensitive to venous oxygenation level by exploitation of the magnetic susceptibility of deoxygenated blood. We assessed cerebral venous blood oxygenation changes during simple voluntary breath-holding (apnea) and hyperventilation by use of SWI at 3T. MATERIALS AND METHODS: We performed SWI scans (3T; acquisition time of 1 minute, 28 seconds; centered on the anterior commissure and the posterior commissure) on 10 healthy male volunteers during baseline breathing as well as during simple voluntary hyperventilation and apnea challenges. The hyperventilation and apnea tasks were separated by a 5-minute resting period. SWI venograms were generated, and the signal changes on SWI before and after the respiratory stress tasks were compared by means of a paired Student t test. RESULTS: Changes in venous vasculature visibility caused by the respiratory challenges were directly visualized on the SWI venograms. The venogram segmentation results showed that voluntary apnea decreased the mean venous blood voxel number by 1.6% (P < .0001), and hyperventilation increased the mean venous blood voxel number by 2.7% (P < .0001). These results can be explained by blood CO2 changes secondary to the respiratory challenges, which can alter cerebrovascular tone and cerebral blood flow and ultimately affect venous oxygen levels. CONCLUSIONS: These results highlight the sensitivity of SWI to simple and noninvasive respiratory challenges and its potential utility in assessing cerebral hemodynamics and vasomotor responses.
PMCID:4057294
PMID: 24371029
ISSN: 0195-6108
CID: 1042032

Vessel-specific quantification of blood oxygenation with T -relaxation-under-phase-contrast MRI

Krishnamurthy, Lisa C; Liu, Peiying; Ge, Yulin; Lu, Hanzhang
PURPOSE: Measurement of venous oxygenation (Yv ) is a critical step toward quantitative assessment of brain oxygen metabolism, a key index in many brain disorders. The present study aims to develop a noninvasive, rapid, and reproducible method to measure Yv in a vessel-specific manner. THEORY: The method, T2 -Relaxation-Under-Phase-Contrast MRI, utilizes complex subtraction of phase-contrast to isolate pure blood signal, applies nonslice-selective T2 -preparation to measure T2 , and converts T2 to oxygenation using a calibration plot. METHODS: Following feasibility demonstration, several technical aspects were examined, including validation with an established global Yv technique, test-retest reproducibility, sensitivity to detect oxygenation changes due to hypoxia and caffeine challenges, applicability of echo-planar-imaging (EPI) acquisition to shorten scan duration, and ability to study veins with a caliber of 1-2 mm. RESULTS: T2 -Relaxation-Under-Phase-Contrast was able to simultaneously measure Yv in all major veins in the brain, including sagittal sinus, straight sinus, great vein, and internal cerebral vein. T2 -Relaxation-Under-Phase-Contrast results showed an excellent agreement with the reference technique, high sensitivity to oxygenation changes, and test-retest variability of 3.5 +/- 1.0%. The use of segmented-EPI was able to reduce the scan duration to 1.5 minutes. It was also feasible to study pial veins and deep veins. CONCLUSION: T2 -Relaxation-Under-Phase-Contrast MRI is a promising technique for vessel-specific oxygenation measurement. Magn Reson Med, 2013. (c) 2013 Wiley Periodicals, Inc.
PMCID:3972354
PMID: 23568830
ISSN: 0740-3194
CID: 723582

Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution [Letter]

Kister, Ilya; Ge, Yulin; Herbert, Joseph; Sinnecker, Tim; Wuerfel, Jens; Paul, Friedemann
PMID: 24276335
ISSN: 0028-3878
CID: 723572

Postmortem study of hippocampus subfields and layers at 7T MR [Meeting Abstract]

Yazdanie, M; Ge, Y; Wadghiri, Y Z; De, Leon M; Wisniewski, T
Background: Atrophy of the hippocampus is a key pathological hallmark of Alzheimer's disease (AD). An interest of subfields of hippocampal imaging has emerged in recent years due to the advent of ultra-high field MR. This work was to evaluate the imaging parameters on human postmortem brain at 7T MR using 3D susceptibility-sensitivity imaging (SWI) with enhanced tissue susceptibility contrast to better identify these layers and hippocampal subfields that are not available on conventional MR in order to better understand the transition of the hippocampus in AD as disease progresses. Methods: Imaging was performed on a 7.0T Siemens MAGNETOM using a 24-element phased array head coil. Post-mortem brain specimens of the hippocampus were obtained from 3 patients (mean: 72.2+4.3 years) with clinically diagnosed AD and 4 age-matched healthy controls (71.4+5.2 years). Coronal brain slices were preserved and fixed in 2% agar for this study. High resolution 3D SWI was obtained with isotropic voxel size 150~320mum. For imaging optimization to better visualize amyloid plaques, we varied TR, TE, BWand flip angle from 30-100ms, 12-36ms, 60-140Hz/ pixel and 10-40degree; respectively. The SWI filtered phase images were used (multiplication factor of 4 ~ 8) to enhance susceptibility contrast in the SWI images. Results: With optimal SWI parameters TR/TE/FA of 80ms/ 20ms/30IS at 7T, Figure 1 exemplifies the excellent image contrast for visualization of hippocampal layers (Fig A) and subfields (Fig B) in an elderly post-mortem brain without AD, specifically for cell types/layers: (1) Alveus; (2) Stratum Oriens; (3) Stratum Pyramidale; (4) Stratum Radiatum; (5) Stratum Lacunosum; (6) Stratum Moleculare; and for Hippocampal Formation subfields: (1) Hippocampal Head; (2, 2') Dentate Gyrus, (3, 3') Cornu Ammonis (CA1), (4) CA2, (5) CA3, (6) Pre-Subiculum/ Subiculum, (7) Para-Subiculum, (8) Entorhinal Cortex. There was significant atrophy of the whole hippocampal formation and subfields inADsamples with lessening of the!
EMBASE:71415997
ISSN: 1552-5260
CID: 953812

Mild traumatic brain injury: longitudinal regional brain volume changes

Zhou, Yongxia; Kierans, Andrea; Kenul, Damon; Ge, Yulin; Rath, Joseph; Reaume, Joseph; Grossman, Robert I; Lui, Yvonne W
Purpose: To investigate longitudinal changes in global and regional brain volume in patients 1 year after mild traumatic brain injury (MTBI) and to correlate such changes with clinical and neurocognitive metrics. Materials and Methods: This institutional review board-approved study was HIPAA compliant. Twenty-eight patients with MTBI (with 19 followed up at 1 year) with posttraumatic symptoms after injury and 22 matched control subjects (with 12 followed up at 1 year) were enrolled. Automated segmentation of brain regions to compute regional gray matter (GM) and white matter (WM) volumes was performed by using three-dimensional T1-weighted 3.0-T magnetic resonance imaging, and results were correlated with clinical metrics. Pearson and Spearman rank correlation coefficients were computed between longitudinal brain volume and neurocognitive scores, as well as clinical metrics, over the course of the follow-up period. Results: One year after MTBI, there was measurable global brain atrophy, larger than that in control subjects. The anterior cingulate WM bilaterally and the left cingulate gyrus isthmus WM, as well as the right precuneal GM, showed significant decreases in regional volume in patients with MTBI over the 1st year after injury (corrected P < .05); this was confirmed by means of cross-sectional comparison with data in control subjects (corrected P < .05). Left and right rostral anterior cingulum WM volume loss correlated with changes in neurocognitive measures of memory (r = 0.65, P = .005) and attention (r = 0.60, P = .01). At 1-year follow-up, WM volume in the left cingulate gyrus isthmus correlated with clinical scores of anxiety (Spearman rank correlation r = -0.68, P = .007) and postconcussive symptoms (Spearman rank correlation r = -0.65, P = .01). Conclusion: These observations demonstrate structural changes to the brain 1 year after injury after a single concussive episode. Regional brain atrophy is not exclusive to moderate and severe traumatic brain injury but may be seen after mild injury. In particular, the anterior part of the cingulum and the cingulate gyrus isthmus, as well as the precuneal GM, may be distinctively vulnerable 1 year after MTBI. (c) RSNA, 2013.
PMCID:3662902
PMID: 23481161
ISSN: 0033-8419
CID: 361672

Functional homotopic changes in multiple sclerosis with resting-state functional MR imaging

Zhou, Y; Milham, M; Zuo, X-N; Kelly, C; Jaggi, H; Herbert, J; Grossman, R I; Ge, Y
BACKGROUND AND PURPOSE: CC is extensively involved in MS with interhemispheric dysfunction. The purpose of this study was to determine whether interhemispheric correlation is altered in MS by use of a recently developed RS-fMRI homotopy technique and whether these homotopic changes correlate with CC pathology. MATERIALS AND METHODS: Twenty-four patients with relapsing-remitting MS and 24 age-matched healthy volunteers were studied with RS-fMRI and DTI acquired at 3T. The Pearson correlation of each pair of symmetric interhemispheric voxels of RS-fMRI time-series data was performed to compute VMHC, and z-transformed for subsequent group-level analysis. In addition, 5 CC segments in the midsagittal area and DTI-derived FA were measured to quantify interhemispheric microstructural changes and correlate with global and regional VMHC in MS. RESULTS: Relative to control participants, patients with MS exhibited an abnormal homotopic pattern with decreased VMHC in the primary visual, somatosensory, and motor cortices and increased VMHC in several regions associated with sensory processing and motor control including the insula, thalamus, pallidum, and cerebellum. The global VMHC correlates moderately with the average FA of the entire CC for all participants in both groups (r = 0.3; P = .03). CONCLUSIONS: Our data provide preliminary evidence of the potential usefulness of VMHC analyses for the detection of abnormalities of interhemispheric coordination in MS. We demonstrated that the whole-brain homotopic RS-fMRI pattern was altered in patients with MS, which was partially associated with the underlying structural degenerative changes of CC measured with FA.
PMCID:3707620
PMID: 23348760
ISSN: 0195-6108
CID: 509532

Ultrahigh-Field MR (7 T) Imaging of Brain Lesions in Neuromyelitis Optica

Kister, Ilya; Herbert, Joseph; Zhou, Yongxia; Ge, Yulin
Background. Brain lesions are common in neuromyelitis optica spectrum disorder (NMOsd) and may resemble lesions of multiple sclerosis (MS). Objectives. To describe the imaging characteristics of supratentorial lesions in NMOsd on ultrahigh-field (7 T) MRI with special attention to vessel-lesion relationship. Methods. Ten NMOsd patients, all women and all seropositive for NMO IgG, with mean age of 51.3 +/- 15.4 years and disease duration of 9.2 +/- 6.4 years, were scanned at a 7 T whole-body human MR system with high-resolution 2D gradient echo sequence optimized to best visualize lesions and venous structures, T2- and T1-weighted imaging. Results. In 10 patients with NMOsd, a total of 92 lesions were observed (mean: 9.2 +/- 8.8; range: 2-30), but only 8 lesions (9%) were traversed by a central venule. All lesions were <5 mm in diameter, and 83% were located in subcortical white matter. There were no lesions in the cortex or basal ganglia. Two patients exhibited diffuse periependymal abnormalities on FLAIR. Conclusions. Small, subcortical lesions without a central venule are the most consistent finding of NMOsd on 7 T MRI of the brain. Ultrahigh-field imaging may be useful for differentiating between NMOsd and MS.
PMCID:3568863
PMID: 23431447
ISSN: 2090-2654
CID: 301182

Default-mode network disruption in mild traumatic brain injury

Zhou, Yongxia; Milham, Michael P; Lui, Yvonne W; Miles, Laura; Reaume, Joseph; Sodickson, Daniel K; Grossman, Robert I; Ge, Yulin
Purpose: To investigate the integrity of the default-mode network (DMN) by using independent component analysis (ICA) methods in patients shortly after mild traumatic brain injury (MTBI) and healthy control subjects, and to correlate DMN connectivity changes with neurocognitive tests and clinical symptoms. Materials and Methods: This study was approved by the institutional review board and complied with HIPAA regulations. Twenty-three patients with MTBI who had posttraumatic symptoms shortly after injury (<2 months) and 18 age-matched healthy control subjects were included in this study. Resting-state functional magnetic resonance imaging was performed at 3 T to characterize the DMN by using ICA methods, including a single-participant ICA on the basis of a comprehensive template from core seeds in the posterior cingulate cortex (PCC) and medial prefrontal cortex (MPFC) nodes. ICA z images of DMN components were compared between the two groups and correlated with neurocognitive tests and clinical performance in patients by using Pearson and Spearman rank correlation. Results: When compared with the control subjects, there was significantly reduced connectivity in the PCC and parietal regions and increased frontal connectivity around the MPFC in patients with MTBI (P < .01). These frontoposterior opposing changes within the DMN were significantly correlated (r = -0.44, P = .03). The reduced posterior connectivity correlated positively with neurocognitive dysfunction (eg, cognitive flexibility), while the increased frontal connectivity correlated negatively with posttraumatic symptoms (ie, depression, anxiety, fatigue, and postconcussion syndrome). Conclusion: These results showed abnormal DMN connectivity patterns in patients with MTBI, which may provide insight into how neuronal communication and information integration are disrupted among DMN key structures after mild head injury. (c) RSNA, 2012.
PMCID:3504316
PMID: 23175546
ISSN: 0033-8419
CID: 185072