Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:kirsct01

Total Results:

144


Cellular and molecular mechanisms of tissue protection by lipophilic calcium channel blockers

Menne, Jan; Park, Joon-Keun; Agrawal, Rahul; Lindschau, Carsten; Kielstein, Jan T; Kirsch, Torsten; Marx, Axel; Muller, Dominik; Bahlmann, Ferdinand H; Meier, Matthias; Bode-Böger, Stefanie M; Haller, Hermann; Fliser, Danilo
Long-acting third-generation dihydropyridine calcium channel blockers (CCBs) improve endothelial dysfunction and prevent cardiovascular events in humans, but their cellular and molecular mechanisms of tissue protection are not elucidated in detail. We assessed organ (renal) protection by the highly lipophilic CCB lercanidipine in a double-transgenic rat (dTGR) model with overexpression of human renin and angiotensinogen genes. We randomly treated dTGR with lercanidipine (2.5 mg/kg/day; n=20) or vehicle (n=20) for 3 wk. Furthermore, we explored the influence of lercanidipine on protein kinase C (PKC) signaling in vivo and in vitro using endothelial and vascular smooth muscle cell cultures. Cumulative mortality was 60% in untreated dTGR, whereas none of the lercanidipine-treated animals died (P<0.001). We found significantly less albuminuria and improved renal function in lercanidipine-treated dTGR (both P<0.05). Lercanidipine treatment also significantly (P<0.05) reduced blood levels of the endogenous NOS inhibitor asymmetric dimethylarginine. On histological examination, we observed significantly less tissue inflammation and fibrosis in lercanidipine-treated animals (both P<0.05). Lercanidipine significantly inhibited angiotensin (ANG) I-mediated PKC-alpha and -delta activation in vivo and in vitro, partly due to reduced intracellular calcium flux. As a result, lercanidipine improved endothelial cell permeability in vitro. Lercanidipine prevents tissue injury and improves survival in a model of progressive organ damage. These effects may result, at least in part, from inhibition of tissue inflammation as well as improved NO bioavailability. Modulation of PKC activity may be an important underlying intracellular mechanism.
PMID: 16597674
ISSN: 1530-6860
CID: 4049342

Determinants of pathological mineralization

Kirsch, Thorsten
PURPOSE OF REVIEW: Physiological mineralization is necessary for the formation of skeletal tissues and for their appropriate functions during adulthood. Pathological or ectopic mineralization of soft tissues, including articular cartilage and cardiovascular tissues, leads to morbidity and mortality. Recent findings suggest that the mechanisms and factors regulating physiological mineralization may be identical or similar to those regulating ectopic mineralization. Therefore, the purpose of this review is to describe the current knowledge of mechanisms and determinants that regulate physiological mineralization and how these determinants can be used to understand ectopic mineralization better. RECENT FINDINGS: Recent findings have indicated that physiological and pathological mineralization are initiated by matrix vesicles, membrane-enclosed particles released from the plasma membrane of mineralization-competent cells. An understanding of how these vesicles initiate the physiological mineralization process may provide novel therapeutic strategies to prevent ectopic mineralization. In addition, other regulators (activators and inhibitors) of physiological mineralization have been identified and characterized, and evidence indicates that the same factors also contribute to the regulation of ectopic mineralization. Finally, programmed cell death (apoptosis) may be a contributor to physiological mineralization, and if occurring after tissue injury may induce ectopic mineralization and mineralization-related differentiation events in the injured area and surrounding areas. SUMMARY: This review describes how the understanding of mechanisms and factors regulating physiological mineralization can be used to develop new therapeutic strategies to prevent pathological or ectopic mineralization events
PMID: 16462525
ISSN: 1040-8711
CID: 76627

Cell-cell and cell-matrix interactions during development and pathogenesis

Kirsch T.
EMBASE:2006434213
ISSN: 1041-9918
CID: 83071

Annexin V and terminal differentiation of growth plate chondrocytes

Wang, Wei; Xu, Jinping; Kirsch, Thorsten
Terminal differentiation and mineralization are the final events in endochondral bone formation and allow the replacement of cartilage by bone. Retinoic acid (RA) stimulates these events, including upregulation of expression and activity of alkaline phosphatase (APase), expression of annexins II, V, and VI proteins, which bind to membranes and form Ca(2+) channels, expression of osteocalcin and runx2, another mineralization-related protein and terminal differentiation-related transcription factor, and ultimately mineralization. Chelating cytosolic Ca(2+) with BAPTA-AM, interfering with annexin Ca(2+) channel activities using K-201, a specific annexin Ca(2+) channel blocker, or suppression of annexin V expression using siRNA inhibited these events. Overexpression of annexin V in embryonic chicken growth plate chondrocytes resulted in an increase of cytoplasmic Ca(2+) concentration, [Ca(2+)](i) similar to [Ca(2+)](i) increase in RA-treated cultures. Overexpression of annexin V also resulted in upregulation of annexin II, annexin VI, osteocalcin, and runx2 gene expression, expression and activity of APase, and ultimately stimulation of mineralization. K-201 inhibited upregulation of osteocalcin and runx2 gene expression, APase expression and activity, and mineralization in annexin V-overexpressing growth plate chondrocytes. These findings indicate that annexins II, V, and VI alter Ca(2+) homeostasis in growth plate chondrocytes thereby regulating terminal differentiation and mineralization events. Overexpression of annexin V is sufficient to stimulate these terminal differentiation events in growth plate chondrocytes, whereas suppression of annexin V expression inhibits these events
PMID: 15777796
ISSN: 0014-4827
CID: 76629

The conserved core domains of annexins A1, A2, A5, and B12 can be divided into two groups with different Ca2+-dependent membrane-binding properties

Patel, Darshana R; Isas, J Mario; Ladokhin, Alexey S; Jao, Christine C; Kim, Yujin E; Kirsch, Thorsten; Langen, Ralf; Haigler, Harry T
The hallmark of the annexin super family of proteins is Ca(2+)-dependent binding to phospholipid bilayers, a property that resides in the conserved core domain of these proteins. Despite the structural similarity between the core domains, studies reported herein showed that annexins A1, A2, A5, and B12 could be divided into two groups with distinctively different Ca(2+)-dependent membrane-binding properties. The division correlates with the ability of the annexins to form Ca(2+)-dependent membrane-bound trimers. Site-directed spin-labeling and Forster resonance energy transfer experimental approaches confirmed the well-known ability of annexins A5 and B12 to form trimers, but neither method detected self-association of annexin A1 or A2 on bilayers. Studies of chimeras in which the N-terminal and core domains of annexins A2 and A5 were swapped showed that trimer formation was mediated by the core domain. The trimer-forming annexin A5 and B12 group had the following Ca(2+)-dependent membrane-binding properties: (1) high Ca(2+) stoichiometry for membrane binding ( approximately 12 mol of Ca(2+)/mol of protein); (2) binding to membranes was very exothermic (> -60 kcal/ mol of protein); and (3) binding to bilayers that were in the liquid-crystal phase but not to bilayers in the gel phase. In contrast, the nontrimer-forming annexin A1 and A2 group had the following Ca(2+)-dependent membrane-binding properties: (1) lower Ca(2+) stoichiometry for membrane binding (<or=4 mol of Ca(2+)/mol of protein); (2) binding to membranes was relatively less exothermic (< -33 kcal/ mol of protein); and (3) binding to bilayers that were in either the liquid-crystal phase or gel phase. The biological implications of this subdivision are discussed
PMID: 15723527
ISSN: 0006-2960
CID: 76630

Annexins - their role in cartilage mineralization

Kirsch, Thorsten
Annexins II, V and VI are highly expressed by hypertrophic and terminally differentiated growth plate chondrocytes and by osteoblasts. Because of the localization of annexins in areas of cartilage and bone mineralization, we hypothesized that these annexins play a regulatory role in the mineralization process. In this article we review the function of annexins II, V and VI in physiological mineralization of skeletal tissues and in pathological mineralization of articular cartilage
PMID: 15574394
ISSN: 1093-9946
CID: 76632

Role of the progressive ankylosis gene (ank) in cartilage mineralization

Wang, Wei; Xu, Jinping; Du, Bin; Kirsch, Thorsten
Mineralization of growth plate cartilage is a critical event during endochondral bone formation, which allows replacement of cartilage by bone. Ankylosis protein (Ank), which transports intracellular inorganic pyrophosphate (PP(i)) to the extracellular milieu, is expressed by hypertrophic and, especially highly, by terminally differentiated mineralizing growth plate chondrocytes. Blocking Ank transport activity or ank expression in terminally differentiated mineralizing growth plate chondrocytes led to increases of intra- and extracellular PP(i) concentrations, decreases of alkaline phosphatase (APase) expression and activity, and inhibition of mineralization, whereas treatment of these cells with the APase inhibitor levamisole led to an increase of extracellular PP(i) concentration and inhibition of mineralization. Ank-overexpressing hypertrophic nonmineralizing growth plate chondrocytes showed decreased intra- and extracellular PP(i) levels; increased mineralization-related gene expression of APase, type I collagen, and osteocalcin; increased APase activity; and mineralization. Treatment of Ank-expressing growth plate chondrocytes with a phosphate transport blocker (phosphonoformic acid [PFA]) inhibited uptake of inorganic phosphate (P(i)) and gene expression of the type III Na(+)/P(i) cotransporters Pit-1 and Pit-2. Furthermore, PFA or levamisole treatment of Ank-overexpressing hypertrophic chondrocytes inhibited APase expression and activity and subsequent mineralization. In conclusion, increased Ank activity results in elevated intracellular PP(i) transport to the extracellular milieu, initial hydrolysis of PP(i) to P(i), P(i)-mediated upregulation of APase gene expression and activity, further hydrolysis and removal of the mineralization inhibitor PP(i), and subsequent mineralization
PMCID:538760
PMID: 15601852
ISSN: 0270-7306
CID: 76631

Syndecan-3: a cell-surface heparan sulfate proteoglycan important for chondrocyte proliferation and function during limb skeletogenesis

Pacifici, Maurizio; Shimo, Tsuyoshi; Gentili, Chiara; Kirsch, Thorsten; Freeman, Theresa A; Enomoto-Iwamoto, Motomi; Iwamoto, Masahiro; Koyama, Eiki
Syndecans are single-pass integral membrane components that serve as co-receptors for growth factors and cytokines and can elicit signal transduction via their cytoplasmic tails. We review here previous studies from our groups on syndecan-3 biology and function in the growth plates of developing long bones in chick and mouse embryos. Gain- and loss-of-function data indicate that syndecan-3 has important roles in restricting mitotic activity to the proliferative zone of growth plate and may do so in close cooperation and interaction with the signaling molecule Indian hedgehog (IHH). Biochemical and protein-modeling data suggest a dimeric/oligomeric syndecan-3 configuration on the chondrocyte's cell surface. Analyses of embryos misexpressing syndecan-3 or lacking IHH provide further clues on syndecan-3/IHH interdependence and interrelationships. The data and the conclusions reached provide insights into mechanisms fine-tuning chondrocyte proliferation, maturation, and function in the developing and growing skeleton and into how abnormalities in these fundamental mechanisms may subtend human congenital pathologies, including osteochondromas in hereditary multiple exostoses syndrome
PMID: 15838620
ISSN: 0914-8779
CID: 76628

Effect of COX-2-specific inhibition on fracture-healing in the rat femur

Brown, Karen M; Saunders, Marnie M; Kirsch, Thorsten; Donahue, Henry J; Reid, J Spence
BACKGROUND: Nonsteroidal anti-inflammatory medications have been shown to delay fracture-healing. COX-2-specific inhibitors such as celecoxib have recently been approved for human use. Our goal was to determine, mechanically, histologically, morphologically, and radiographically, whether COX-2-specific inhibition affects bone-healing. METHODS: A nondisplaced unilateral fracture was created in the right femur of fifty-seven adult male rats. Rats were given no drug, indomethacin (1 mg/kg/day), or celecoxib (3 mg/kg/day) daily, starting on postoperative day 1. Fractures were analyzed at four, eight, and twelve weeks after creation of the fracture. Callus and bridging bone formation was assessed radiographically. The amounts of fibrous tissue, cartilage, woven bone, and mature bone formation were determined histologically. Morphological changes were assessed to determine fibrous healing, callus formation, and bone-remodeling. Callus strength and stiffness were assessed biomechanically with three-point bending tests. RESULTS: At four weeks, only the indomethacin group showed biomechanical and radiographic evidence of delayed healing. Although femora from rats treated with celecoxib appeared to have more fibrous tissue than those from untreated rats at four and eight weeks, radiographic signs of callus formation, mechanical strength, and stiffness did not differ significantly between the groups. By twelve weeks, there were no significant differences among the three groups. CONCLUSIONS: Postoperative administration of celecoxib, a COX-2-specific inhibitor, did not delay healing as seen at twelve weeks following fracture in adult rat femora. At four and eight weeks, fibrous healing predominated in the celecoxib group as compared with the findings in the untreated group; however, mechanical strength and radiographic signs of healing were not significantly inhibited. Clinical Relevance: Many orthopaedists rely on narcotic analgesia for postfracture and postoperative pain, despite deleterious side effects and morbidity. Traditional nonsteroidal anti-inflammatory medications have been shown to delay fracture union. This effect may be smaller with COX-2-specific inhibitors
PMID: 14711953
ISSN: 0021-9355
CID: 76633

The role of the progressive ankylosis gene (ank) in cartilage mineralization

Chapter by: Wang, W; Xu, J; Du, B; Kirsch, T
in: Chemistry and biology of mineralized tissues by Landis W; Sodek J [Eds]
Toronto : University of Toronto Press, 2004
pp. 43-46
ISBN: 0772732000
CID: 4804