Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:koidea01

Total Results:

138


Allosteric Inhibition of Bcr-Abl Kinase by High-Affinity Monobody Inhibitors Directed to the SH2-Kinase Interface

Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei
Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia (CML). We have shown that a tandem fusion of two designed binding proteins, termed monobodies, respectively directed to the interaction interface between the SH2 and kinase domains and to the phosphotyrosine-binding site of the SH2 domain inhibits the of Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher-affinity monobodies, with single nanomolar KD values, targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in CML cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl.
PMCID:4861451
PMID: 26912659
ISSN: 1083-351x
CID: 2004682

Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S; Montano, Sherwin P; Kurosawa, Kohei; Zheng, Yupeng; Akin, Louesa R; Swist-Rosowska, Kalina M; Grzybowski, Adrian T; Koide, Akiko; Krajewski, Krzysztof; Strahl, Brian D; Kelleher, Neil L; Ruthenburg, Alexander J; Koide, Shohei
Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. This "antigen clasping" produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody-antigen recognition and suggests a strategy for developing extremely specific antibodies.
PMCID:4776465
PMID: 26862167
ISSN: 1091-6490
CID: 2004692

Crystal Structures of a Double-Barrelled Fluoride Channel [Meeting Abstract]

Stockbridge, Randy; Kolmakova-Partensky, Ludmila; Shane, Tania; Koide, Akiko; Koide, Shohei; Miller, Christopher; Newstead, Simon
ISI:000375093500037
ISSN: 1542-0086
CID: 2410552

ETO family protein Mtgr1 mediates Prdm14 functions in stem cell maintenance and primordial germ cell formation

Nady, Nataliya; Gupta, Ankit; Ma, Ziyang; Swigut, Tomek; Koide, Akiko; Koide, Shohei; Wysocka, Joanna
Prdm14 is a sequence-specific transcriptional regulator of embryonic stem cell (ESC) pluripotency and primordial germ cell (PGC) formation. It exerts its function, at least in part, through repressing genes associated with epigenetic modification and cell differentiation. Here, we show that this repressive function is mediated through an ETO-family co-repressor Mtgr1, which tightly binds to the pre-SET/SET domains of Prdm14 and co-occupies its genomic targets in mouse ESCs. We generated two monobodies, synthetic binding proteins, targeting the Prdm14 SET domain and demonstrate their utility, respectively, in facilitating crystallization and structure determination of the Prdm14-Mtgr1 complex, or as genetically encoded inhibitor of the Prdm14-Mtgr1 interaction. Structure-guided point mutants and the monobody abrogated the Prdm14-Mtgr1 association and disrupted Prdm14's function in mESC gene expression and PGC formation in vitro. Altogether, our work uncovers the molecular mechanism underlying Prdm14-mediated repression and provides renewable reagents for studying and controlling Prdm14 functions.
PMCID:4749557
PMID: 26523391
ISSN: 2050-084x
CID: 2004702

Architecture of the fungal nuclear pore inner ring complex

Stuwe, Tobias; Bley, Christopher J; Thierbach, Karsten; Petrovic, Stefan; Schilbach, Sandra; Mayo, Daniel J; Perriches, Thibaud; Rundlet, Emily J; Jeon, Young E; Collins, Leslie N; Huber, Ferdinand M; Lin, Daniel H; Paduch, Marcin; Koide, Akiko; Lu, Vincent; Fischer, Jessica; Hurt, Ed; Koide, Shohei; Kossiakoff, Anthony A; Hoelz, Andre
The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. We present the reconstitution and interdisciplinary analyses of the ~425-kilodalton inner ring complex (IRC), which forms the central transport channel and diffusion barrier of the NPC, revealing its interaction network and equimolar stoichiometry. The Nsp1*Nup49*Nup57 channel nucleoporin heterotrimer (CNT) attaches to the IRC solely through the adaptor nucleoporin Nic96. The CNT*Nic96 structure reveals that Nic96 functions as an assembly sensor that recognizes the three-dimensional architecture of the CNT, thereby mediating the incorporation of a defined CNT state into the NPC. We propose that the IRC adopts a relatively rigid scaffold that recruits the CNT to primarily form the diffusion barrier of the NPC, rather than enabling channel dilation.
PMCID:4826903
PMID: 26316600
ISSN: 1095-9203
CID: 2004742

Monobody-mediated alteration of enzyme specificity

Tanaka, Shun-Ichi; Takahashi, Tetsuya; Koide, Akiko; Ishihara, Satoru; Koikeda, Satoshi; Koide, Shohei
Current methods for engineering enzymes modify enzymes themselves and require a detailed mechanistic understanding or a high-throughput assay. Here, we describe a new approach where catalytic properties are modulated with synthetic binding proteins, termed monobodies, directed to an unmodified enzyme. Using the example of a beta-galactosidase from Bacillus circulans, we efficiently identified monobodies that restricted its substrates for its transgalactosylation reaction and selectively enhanced the production of small oligosaccharide prebiotics.
PMCID:4989918
PMID: 26322825
ISSN: 1552-4469
CID: 2004732

Crystal structures of a double-barrelled fluoride ion channel

Stockbridge, Randy B; Kolmakova-Partensky, Ludmila; Shane, Tania; Koide, Akiko; Koide, Shohei; Miller, Christopher; Newstead, Simon
To contend with hazards posed by environmental fluoride, microorganisms export this anion through F(-)-specific ion channels of the Fluc family. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including strong selectivity for F(-) over Cl(-) and dual-topology dimeric assembly. To understand the chemical basis for F(-) permeation and how the antiparallel subunits convene to form a F(-)-selective pore, here we solve the crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F(-) present, to a maximum resolution of 2.1 A. The structures reveal a surprising 'double-barrelled' channel architecture in which two F(-) ion pathways span the membrane, and the dual-topology arrangement includes a centrally coordinated cation, most likely Na(+). F(-) selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings.
PMCID:4876929
PMID: 26344196
ISSN: 1476-4687
CID: 2004722

Crystal Structure of Fluc, a Microbial Fluoride Channel [Meeting Abstract]

Stockbridge, Randy; Kolmakova-Partensky, Ludmila; Koide, Akiko; Koide, Shohei; Newstead, Simon; Miller, Christopher
ISI:000362849400629
ISSN: 1542-0086
CID: 2410542

Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins

Zhong, Nan; Loppnau, Peter; Seitova, Alma; Ravichandran, Mani; Fenner, Maria; Jain, Harshika; Bhattacharya, Anandi; Hutchinson, Ashley; Paduch, Marcin; Lu, Vincent; Olszewski, Michal; Kossiakoff, Anthony A; Dowdell, Evan; Koide, Akiko; Koide, Shohei; Huang, Haiming; Nadeem, Vincent; Sidhu, Sachdev S; Greenblatt, Jack F; Marcon, Edyta; Arrowsmith, Cheryl H; Edwards, Aled M; Graslund, Susanne
We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols.
PMCID:4593582
PMID: 26437229
ISSN: 1932-6203
CID: 2004712

A synthetic antibody fragment targeting nicastrin affects assembly and trafficking of gamma-secretase

Zhang, Xulun; Hoey, Robert; Koide, Akiko; Dolios, Georgia; Paduch, Marcin; Nguyen, Phuong; Wu, Xianzhong; Li, Yueming; Wagner, Steven L; Wang, Rong; Koide, Shohei; Sisodia, Sangram S
The gamma-secretase complex, composed of presenilin, nicastrin (NCT), anterior pharynx-defective 1 (APH-1), and presenilin enhancer 2 (PEN-2), is assembled in a highly regulated manner and catalyzes the intramembranous proteolysis of many type I membrane proteins, including Notch and amyloid precursor protein. The Notch family of receptors plays important roles in cell fate specification during development and in adult tissues, and aberrant hyperactive Notch signaling causes some forms of cancer. gamma-Secretase-mediated processing of Notch at the cell surface results in the generation of the Notch intracellular domain, which associates with several transcriptional coactivators involved in nuclear signaling events. On the other hand, gamma-secretase-mediated processing of amyloid precursor protein leads to the production of amyloid beta (Abeta) peptides that play an important role in the pathogenesis of Alzheimer disease. We used a phage display approach to identify synthetic antibodies that specifically target NCT and expressed them in the single-chain variable fragment (scFv) format in mammalian cells. We show that expression of a NCT-specific scFv clone, G9, in HEK293 cells decreased the production of the Notch intracellular domain but not the production of amyloid beta peptides that occurs in endosomal and recycling compartments. Biochemical studies revealed that scFvG9 impairs the maturation of NCT by associating with immature forms of NCT and, consequently, prevents its association with the other components of the gamma-secretase complex, leading to degradation of these molecules. The reduced cell surface levels of mature gamma-secretase complexes, in turn, compromise the intramembranous processing of Notch.
PMCID:4263884
PMID: 25352592
ISSN: 1083-351x
CID: 2004792