Searched for: in-biosketch:yes
person:lf959
Rapid 3D-imaging of phosphocreatine recovery kinetics in the human lower leg muscles with compressed sensing
Parasoglou, Prodromos; Feng, Li; Xia, Ding; Otazo, Ricardo; Regatte, Ravinder R
The rate of phosphocreatine (PCr) resynthesis following physical exercise is an accepted index of mitochondrial oxidative metabolism and has been studied extensively with unlocalized (31) P-MRS methods and small surface coils. Imaging experiments using volume coils that measure several muscles simultaneously can provide new insights into the variability of muscle function in healthy and diseased states. However, they are limited by long acquisition times relative to the dynamics of PCr recovery. This work focuses on the implementation of a compressed sensing technique to accelerate imaging of PCr resynthesis following physical exercise, using a modified three-dimensional turbo-spin-echo sequence and principal component analysis as sparsifying transform. The compressed sensing technique was initially validated using 2-fold retrospective undersampling of fully sampled data from four volunteers acquired on a 7T MRI system (voxel size: 1.6 mL, temporal resolution: 24 s), which led to an accurate estimation of the mono-exponential PCr resynthesis rate constant (mean error <6.4%). Acquisitions with prospective 2-fold acceleration (temporal resolution: 12 s) demonstrated that three-dimensional mapping of PCr resynthesis is possible at a temporal resolution that is sufficiently high for characterizing the recovery curve of several muscles in a single measurement. Magn Reson Med, 2012. (c) 2012 Wiley Periodicals, Inc.
PMCID:3504632
PMID: 23023624
ISSN: 0740-3194
CID: 184882
Accelerated phase-contrast cine MRI using k-t SPARSE-SENSE
Kim, Daniel; Dyvorne, Hadrien A; Otazo, Ricardo; Feng, Li; Sodickson, Daniel K; Lee, Vivian S
Phase-contrast (PC) cine MRI is a promising method for assessment of pathologic hemodynamics, including cardiovascular and hepatoportal vascular dynamics, but its low data acquisition efficiency limits the achievable spatial and temporal resolutions within clinically acceptable breath-hold durations. We propose to accelerate PC cine MRI using an approach which combines compressed sensing and parallel imaging (k-t SPARSE-SENSE). We validated the proposed 6-fold accelerated PC cine MRI against 3-fold accelerated PC cine MRI with parallel imaging (generalized autocalibrating partially parallel acquisitions). With the programmable flow pump, we simulated a time varying waveform emulating hepatic blood flow. Normalized root mean square error between two sets of velocity measurements was 2.59%. In multiple blood vessels of 12 control subjects, two sets of mean velocity measurements were in good agreement (mean difference = -0.29 cm/s; lower and upper 95% limits of agreement = -5.26 and 4.67 cm/s, respectively). The mean phase noise, defined as the standard deviation of the phase in a homogeneous stationary region, was significantly lower for k-t SPARSE-SENSE than for generalized autocalibrating partially parallel acquisitions (0.05 +/- 0.01 vs. 0.19 +/- 0.06 radians, respectively; P < 0.01). The proposed 6-fold accelerated PC cine MRI pulse sequence with k-t SPARSE-SENSE is a promising investigational method for rapid velocity measurement with relatively high spatial (1.7 mm x 1.7 mm) and temporal ( approximately 35 ms) resolutions. Magn Reson Med, 2011. (c) 2011 Wiley Periodicals, Inc.
PMCID:3306497
PMID: 22083998
ISSN: 0740-3194
CID: 162024
Rapid monitoring of iron-chelating therapy in thalassemia major by a new cardiovascular MR measure: the reduced transverse relaxation rate
Kim, Daniel; Jensen, Jens H; Wu, Ed X; Feng, Li; Au, Wing-Yan; Cheung, Jerry S; Ha, Shau-Yin; Sheth, Sujit S; Brittenham, Gary M
In iron overload, almost all the excess iron is stored intracellularly as rapidly mobilizable ferritin iron and slowly exchangeable hemosiderin iron. Increases in cytosolic iron may produce oxidative damage that ultimately results in cardiomyocyte dysfunction. Because intracellular ferritin iron is evidently in equilibrium with the low-molecular-weight cytosolic iron pool, measurements of ferritin iron potentially provide a clinically useful indicator of changes in cytosolic iron. The cardiovascular magnetic resonance (CMR) index of cardiac iron used clinically, the effective transverse relaxation rate (R(2)*), is principally influenced by hemosiderin iron and changes only slowly over several months, even with intensive iron-chelating therapy. Another conventional CMR index of cardiac iron, the transverse relaxation rate (R(2)), is sensitive to both hemosiderin iron and ferritin iron. We have developed a new MRI measure, the 'reduced transverse relaxation rate' (RR(2)), and have proposed in previous studies that this measure is primarily sensitive to ferritin iron and largely independent of hemosiderin iron in phantoms mimicking ferritin iron and human liver explants. We hypothesized that RR(2) could detect changes produced by 1 week of iron-chelating therapy in patients with transfusion-dependent thalassemia. We imaged 10 patients with thalassemia major at 1.5 T in mid-ventricular short-axis planes of the heart, initially after suspending iron-chelating therapy for 1 week and subsequently after resuming oral deferasirox. After resuming iron-chelating therapy, significant decreases were observed in the mean myocardial RR(2) (7.8%, p < 0.01) and R(2) (5.5%, p < 0.05), but not in R(2)* (1.7%, p > 0.90). Although the difference between changes in RR(2) and R(2) was not significant (p > 0.3), RR(2) was consistently more sensitive than R(2) (and R(2)*) to the resumption of iron-chelating therapy, as judged by the effect sizes of relaxation rate differences detected. Although further studies are needed, myocardial RR(2) may be a promising investigational method for the rapid assessment of the effects of iron-chelating therapy in the heart
PMCID:3138893
PMID: 21190261
ISSN: 1099-1492
CID: 138284
Accelerated cardiac T(2) mapping using breath-hold multiecho fast spin-echo pulse sequence with k-t FOCUSS
Feng L; Otazo R; Jung H; Jensen JH; Ye JC; Sodickson DK; Kim D
Cardiac T(2) mapping is a promising method for quantitative assessment of myocardial edema and iron overload. We have developed a new multiecho fast spin echo (ME-FSE) pulse sequence for breath-hold T(2) mapping with acceptable spatial resolution. We propose to further accelerate this new ME-FSE pulse sequence using k-t focal underdetermined system solver adapted with a framework that uses both compressed sensing and parallel imaging (e.g., sensitivity encoding) to achieve higher spatial resolution. We imaged 12 control subjects in midventricular short-axis planes and compared the accuracy of T(2) measurements obtained using ME-FSE with generalized autocalibrating partially parallel acquisitions and ME-FSE with k-t focal underdetermined system solver. For image reconstruction, we used a bootstrapping two-step approach, where in the first step fast Fourier transform was used as the sparsifying transform and in the final step principal component analysis was used as the sparsifying transform. When compared with T(2) measurements obtained using generalized autocalibrating partially parallel acquisitions, T(2) measurements obtained using k-t focal underdetermined system solver were in excellent agreement (mean difference = 0.04 msec; upper/lower 95% limits of agreement were 2.26/-2.19 msec, respectively). The proposed accelerated ME-FSE pulse sequence with k-t focal underdetermined system solver is a promising investigational method for rapid T(2) measurement of the heart with relatively high spatial resolution (1.7 x 1.7 mm(2) ). Magn Reson Med, 2011. (c) 2011 Wiley-Liss, Inc
PMCID:3097270
PMID: 21360737
ISSN: 1522-2594
CID: 127198
Magnetic resonance assessment of iron overload by separate measurement of tissue ferritin and hemosiderin iron
Wu, Ed X; Kim, Daniel; Tosti, Christina L; Tang, Haiying; Jensen, Jens H; Cheung, Jerry S; Feng, Li; Au, Wing-Yan; Ha, Shau-Yin; Sheth, Sujit S; Brown, Truman R; Brittenham, Gary M
With transfusional iron overload, almost all the excess iron is sequestered intracellularly as rapidly mobilizable, dispersed, soluble ferritin iron, and as aggregated, insoluble hemosiderin iron for long-term storage. Established magnetic resonance imaging (MRI) indicators of tissue iron (R(2), R(2)*) are principally influenced by hemosiderin iron and change slowly, even with intensive iron chelation. Intracellular ferritin iron is evidently in equilibrium with the low-molecular-weight cytosolic iron pool that can change rapidly with iron chelation. We have developed a new MRI method to separately measure ferritin and hemosiderin iron, based on the non-monoexponential signal decay induced by aggregated iron in multiple-spin-echo sequences. We have initially validated the method in agarose phantoms and in human liver explants and shown the feasibility of its application in patients with thalassemia major. Measurement of tissue ferritin iron is a promising new means to rapidly evaluate the effectiveness of iron-chelating regimens
PMCID:2943673
PMID: 20712781
ISSN: 1749-6632
CID: 112209
Numerical and in vivo validation of fast cine displacement-encoded with stimulated echoes (DENSE) MRI for quantification of regional cardiac function
Feng, Li; Donnino, Robert; Babb, James; Axel, Leon; Kim, Daniel
Quantitative assessment of regional cardiac function can improve the accuracy of detecting wall motion abnormalities due to heart disease. While recently developed fast cine displacement-encoded with stimulated echoes (DENSE) MRI is a promising modality for the quantification of regional myocardial function, it has not been validated for clinical applications. The purpose of this study, therefore, was to validate the accuracy of fast cine DENSE MRI with numerical simulation and in vivo experiments. A numerical phantom was generated to model physiologically relevant deformation of the heart, and the accuracy of fast cine DENSE was evaluated against the numerical reference. For in vivo validation, 12 controls and 13 heart-disease patients were imaged using both fast cine DENSE and myocardial tagged MRI. Numerical simulation demonstrated that the echo-combination DENSE reconstruction method is relatively insensitive to clinically relevant resonance frequency offsets. The strain measurements by fast cine DENSE and the numerical reference were strongly correlated and in excellent agreement (mean difference = 0.00; 95% limits of agreement were 0.01 and -0.02). The strain measurements by fast cine DENSE and myocardial tagged MRI were strongly correlated (correlation coefficient = 0.92) and in good agreement (mean difference = 0.01; 95% limits of agreement were 0.07 and -0.04)
PMCID:2737067
PMID: 19585609
ISSN: 1522-2594
CID: 101933