Searched for: in-biosketch:yes
person:liddes01
New tools for studying microglia in the mouse and human CNS
Bennett, Mariko L; Bennett, F Chris; Liddelow, Shane A; Ajami, Bahareh; Zamanian, Jennifer L; Fernhoff, Nathaniel B; Mulinyawe, Sara B; Bohlen, Christopher J; Adil, Aykezar; Tucker, Andrew; Weissman, Irving L; Chang, Edward F; Li, Gordon; Grant, Gerald A; Hayden Gephart, Melanie G; Barres, Ben A
The specific function of microglia, the tissue resident macrophages of the brain and spinal cord, has been difficult to ascertain because of a lack of tools to distinguish microglia from other immune cells, thereby limiting specific immunostaining, purification, and manipulation. Because of their unique developmental origins and predicted functions, the distinction of microglia from other myeloid cells is critically important for understanding brain development and disease; better tools would greatly facilitate studies of microglia function in the developing, adult, and injured CNS. Here, we identify transmembrane protein 119 (Tmem119), a cell-surface protein of unknown function, as a highly expressed microglia-specific marker in both mouse and human. We developed monoclonal antibodies to its intracellular and extracellular domains that enable the immunostaining of microglia in histological sections in healthy and diseased brains, as well as isolation of pure nonactivated microglia by FACS. Using our antibodies, we provide, to our knowledge, the first RNAseq profiles of highly pure mouse microglia during development and after an immune challenge. We used these to demonstrate that mouse microglia mature by the second postnatal week and to predict novel microglial functions. Together, we anticipate these resources will be valuable for the future study and understanding of microglia in health and disease.
PMCID:4812770
PMID: 26884166
ISSN: 1091-6490
CID: 2743362
Ontogeny and Phylogeny of Brain Barrier Mechanisms
Stolp, Helen B; Saunders, Norman R; Liddelow, Shane A
[S.l.] : Frontiers Media SA, 2016
Extent: 358 p.
ISBN: 2889198103
CID: 2743982
Editorial: Ontogeny and Phylogeny of Brain Barrier Mechanisms [Editorial]
Stolp, Helen B; Liddelow, Shane A; Saunders, Norman R
PMCID:4754436
PMID: 26909020
ISSN: 1662-4548
CID: 2743352
SnapShot: Astrocytes in Health and Disease
Liddelow, Shane; Barres, Ben
Astrocytes are central nervous system (CNS) glial cells with many important functions for normal development and neural functioning. They help control extracellular ion and neurotransmitter concentrations; provide neurotrophic support; are implicated in synapse formation, function, and pruning; and help maintain the blood-brain barrier. Following injury and in disease, they undergo rapid and chronic alterations in function that can either promote or hinder recovery, depending on the disease.
PMID: 26317476
ISSN: 1097-4172
CID: 2743922
An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex (vol 35, pg 11929, 2014) [Correction]
Zhang, Ye; Chen, Kenian; Sloan, Steven A; Bennett, Mariko L; Scholze, Anja R; O'Keeffe, Sean; Phatnani, Hemali P; Guarnieri, Paolo; Caneda, Christine; Ruderisch, Nadine; Deng, Shuyun; Liddelow, Shane A; Zhang, Chaolin; Daneman, Richard; Maniatis, Tom; Barres, Ben A; Wu, Jian Qian
ISI:000349409300040
ISSN: 0270-6474
CID: 2743482
Development of the choroid plexus and blood-CSF barrier
Liddelow, Shane A
Well-known as one of the main sources of cerebrospinal fluid (CSF), the choroid plexuses have been, and still remain, a relatively understudied tissue in neuroscience. The choroid plexus and CSF (along with the blood-brain barrier proper) are recognized to provide a robust protective effort for the brain: a physical barrier to impede entrance of toxic metabolites to the brain; a "biochemical" barrier that facilitates removal of moieties that circumvent this physical barrier; and buoyant physical protection by CSF itself. In addition, the choroid plexus-CSF system has been shown to be integral for normal brain development, central nervous system (CNS) homeostasis, and repair after disease and trauma. It has been suggested to provide a stem-cell like repository for neuronal and astrocyte glial cell progenitors. By far, the most widely recognized choroid plexus role is as the site of the blood-CSF barrier, controller of the internal CNS microenvironment. Mechanisms involved combine structural diffusion restraint from tight junctions between plexus epithelial cells (physical barrier) and specific exchange mechanisms across the interface (enzymatic barrier). The current hypothesis states that early in development this interface is functional and more specific than in the adult, with differences historically termed as "immaturity" actually correctly reflecting developmental specialization. The advanced knowledge of the choroid plexus-CSF system proves itself imperative to understand a range of neurological diseases, from those caused by plexus or CSF drainage dysfunction (e.g., hydrocephalus) to more complicated late-stage diseases (e.g., Alzheimer's) and failure of CNS regeneration. This review will focus on choroid plexus development, outlining how early specializations may be exploited clinically.
PMCID:4347429
PMID: 25784848
ISSN: 1662-4548
CID: 2743382
Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study
Saunders, Norman R; Dziegielewska, Katarzyna M; Mollgard, Kjeld; Habgood, Mark D; Wakefield, Matthew J; Lindsay, Helen; Stratzielle, Nathalie; Ghersi-Egea, Jean-Francois; Liddelow, Shane A
The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and adult with additional data obtained at intermediate ages from microarray analysis. The largest represented functional group in the embryo was amino acid transporters (twelve) with expression levels 2-98 times greater than in the adult. In contrast, in the adult only six amino acid transporters were up-regulated compared to the embryo and at more modest enrichment levels (<5-fold enrichment above E15). In E15 plexus five glucose transporters, in particular Glut-1, and only one monocarboxylate transporter were enriched compared to the adult, whereas only two glucose transporters but six monocarboxylate transporters in the adult plexus were expressed at higher levels than in embryos. These results are compared with earlier published physiological studies of amino acid and monocarboxylate transport in developing rodents. This comparison shows correlation of high expression of some transporters in the developing brain with higher amino acid transport activity reported previously. Data for divalent metal transporters are also considered. Immunohistochemistry of several transporters (e.g., Slc16a10, a thyroid hormone transporter) gene products was carried out to confirm translational activity and to define cellular distribution of the proteins. Overall the results show that there is substantial expression of numerous influx transporters in the embryonic choroid plexus, many at higher levels than in the adult. This, together with immunohistochemical evidence and data from published physiological transport studies suggests that the choroid plexus in embryonic brain plays a major role in supplying the developing brain with essential nutrients.
PMCID:4412010
PMID: 25972776
ISSN: 1662-4548
CID: 2743912
The inner CSF-brain barrier: developmentally controlled access to the brain via intercellular junctions
Whish, Sophie; Dziegielewska, Katarzyna M; Mollgard, Kjeld; Noor, Natassya M; Liddelow, Shane A; Habgood, Mark D; Richardson, Samantha J; Saunders, Norman R
In the adult the interface between the cerebrospinal fluid and the brain is lined by the ependymal cells, which are joined by gap junctions. These intercellular connections do not provide a diffusional restrain between the two compartments. However, during development this interface, initially consisting of neuroepithelial cells and later radial glial cells, is characterized by "strap" junctions, which limit the exchange of different sized molecules between cerebrospinal fluid and the brain parenchyma. Here we provide a systematic study of permeability properties of this inner cerebrospinal fluid-brain barrier during mouse development from embryonic day, E17 until adult. Results show that at fetal stages exchange across this barrier is restricted to the smallest molecules (286Da) and the diffusional restraint is progressively removed as the brain develops. By postnatal day P20, molecules the size of plasma proteins (70 kDa) diffuse freely. Transcriptomic analysis of junctional proteins present in the cerebrospinal fluid-brain interface showed expression of adherens junctional proteins, actins, cadherins and catenins changing in a development manner consistent with the observed changes in the permeability studies. Gap junction proteins were only identified in the adult as was claudin-11. Immunohistochemistry was used to localize at the cellular level some of the adherens junctional proteins of genes identified from transcriptomic analysis. N-cadherin, beta - and alpha-catenin immunoreactivity was detected outlining the inner CSF-brain interface from E16; most of these markers were not present in the adult ependyma. Claudin-5 was present in the apical-most part of radial glial cells and in endothelial cells in embryos, but only in endothelial cells including plexus endothelial cells in adults. Claudin-11 was only immunopositive in the adult, consistent with results obtained from transcriptomic analysis. These results provide information about physiological, molecular and morphological-related permeability changes occurring at the inner cerebrospinal fluid-brain barrier during brain development.
PMCID:4325900
PMID: 25729345
ISSN: 1662-4548
CID: 2743392
An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex
Zhang, Ye; Chen, Kenian; Sloan, Steven A; Bennett, Mariko L; Scholze, Anja R; O'Keeffe, Sean; Phatnani, Hemali P; Guarnieri, Paolo; Caneda, Christine; Ruderisch, Nadine; Deng, Shuyun; Liddelow, Shane A; Zhang, Chaolin; Daneman, Richard; Maniatis, Tom; Barres, Ben A; Wu, Jian Qian
The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex. We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type. Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain. For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase. This dataset will provide a powerful new resource for understanding the development and function of the brain. To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain.
PMCID:4152602
PMID: 25186741
ISSN: 1529-2401
CID: 2743402
Age-dependent transcriptome and proteome following transection of neonatal spinal cord of Monodelphis domestica (South American grey short-tailed opossum)
Saunders, Norman R; Noor, Natassya M; Dziegielewska, Katarzyna M; Wheaton, Benjamin J; Liddelow, Shane A; Steer, David L; Ek, C Joakim; Habgood, Mark D; Wakefield, Matthew J; Lindsay, Helen; Truettner, Jessie; Miller, Robert D; Smith, A Ian; Dietrich, W Dalton
This study describes a combined transcriptome and proteome analysis of Monodelphis domestica response to spinal cord injury at two different postnatal ages. Previously we showed that complete transection at postnatal day 7 (P7) is followed by profuse axon growth across the lesion with near-normal locomotion and swimming when adult. In contrast, at P28 there is no axon growth across the lesion, the animals exhibit weight-bearing locomotion, but cannot use hind limbs when swimming. Here we examined changes in gene and protein expression in the segment of spinal cord rostral to the lesion at 24 h after transection at P7 and at P28. Following injury at P7 only forty genes changed (all increased expression); most were immune/inflammatory genes. Following injury at P28 many more genes changed their expression and the magnitude of change for some genes was strikingly greater. Again many were associated with the immune/inflammation response. In functional groups known to be inhibitory to regeneration in adult cords the expression changes were generally muted, in some cases opposite to that required to account for neurite inhibition. For example myelin basic protein expression was reduced following injury at P28 both at the gene and protein levels. Only four genes from families with extracellular matrix functions thought to influence neurite outgrowth in adult injured cords showed substantial changes in expression following injury at P28: Olfactomedin 4 (Olfm4, 480 fold compared to controls), matrix metallopeptidase (Mmp1, 104 fold), papilin (Papln, 152 fold) and integrin alpha4 (Itga4, 57 fold). These data provide a resource for investigation of a priori hypotheses in future studies of mechanisms of spinal cord regeneration in immature animals compared to lack of regeneration at more mature stages.
PMCID:4051688
PMID: 24914927
ISSN: 1932-6203
CID: 2743412